
EUROGRAPHICS 2007 / P. Cignoni and J. Sochor Short Papers

Fast Hierarchical 3D Distance Transforms on the GPU

Nicolas Cuntz and Andreas Kolb

Computer Graphics Group, University of Siegen, Germany

Abstract

This paper describes a fast approximate approach for the GPU-based computation of 3D Euclidean distance

transforms (DT), i.e. distance fields with associated vector information to the closest object point. Our hierarchical

method works on discrete voxel grids and uses a propagation technique, both on a single hierarchy level and

between the levels. Using our hierarchical approach, the effort to compute the DT is significantly reduced. It is

well suited for applications that mainly rely on exact distance values close to the boundary.

Our technique is purely GPU-based. All hierarchical operations are performed on the GPU. A direct comparison

with the Jump Flooding Algorithm (JFA) shows that our approach is faster and provides better scaling in speed

and precision, while JFA should be preferred in applications that require a more precise DT.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling - Curve, surface, solid, and object representations

1. Introduction

Signed or unsigned distance fields have many applications
in computer graphics, scientific visualization and related ar-
eas. Examples are implicit surface representation and colli-
sion detection [KLRS04], for skeletonization [ST04] or for
accelerated volume raytracing [HSS∗05].

Computing a 3D Euclidean DT is a well studied prob-
lem [Cui99]. Depending on the initial object representation,
as voxel grid or as explicit geometric representation, differ-
ent approaches have been proposed. We consider a voxel
grid, where the voxels next to the boundary are classified
as interior or exterior, assuming that the boundary is closed.
Concerning the voxel grid approach, there are two major cat-
egories, propagation methods and methods based on Voronoi
diagrams. Propagation methods propagate the distance infor-
mation to the neighboring voxels, either by spacial sweeping
or by contour propagation.

GPU-based approaches have been presented for DT com-
putation in the 2D case for voxel grid input [ST04, RT06]
and for 3D polygonal input data [SPG03,SGGM06].

Our contribution: The method presented in this paper
works on 3D voxel grid input models and is based on the
propagation approach. The approach uses a specific hierar-
chical technique consisting of push-downs and pull-ups in

order to achieve a logarithmic behavior by exponentially re-
ducing the number of propagation steps needed for the DT
computation. The results show that errors can be reduced
significantly with minor computational costs. We compare
our approach to the Jump Flooding Algorithm (JFA) [RT06]
in order to provide hints for the applicability of either algo-
rithm to specific problem domains.

The remainder of this paper is structured as follows: Sec. 2
discusses related research results. Our hierarchical approach
is described in Sec. 3. In Sec. 4, experimental results in direct
comparison to the JFA are provided.

2. Prior Work

This section describes the main approaches to compute DTs
on voxel grids utilizing programmable Graphics Processing
Units (GPUs).

Considering a closed object boundary δΩ, the Euclidean
distance transform dt for a voxel P is defined as dt(P) =
(dtd(P),dtδ(P)), where

dtd(P) = sP min
Q∈δΩ

{‖P−Q‖},dtδ(P) = arg min
Q∈δΩ

{‖P−Q‖}

where sP denotes the sign w.r.t. δΩ (1: exterior, -1: interior),
and argminQ is an operator returning a point Q constituting

c© The Eurographics Association 2007.

93

http://www.eg.org
http://diglib.eg.org

N. Cuntz & A. Kolb / Fast Hierarchical 3D Distance Transforms on the GPU

Figure 1: Two propagation steps (white/yellow: ±M,
blue/green: +exterior/−interior) – note that dt is initialized
with precise sub-pixel references in this example.

the minimum. Thus, dt(P) stores the signed distance and the
point Q ∈ δΩ closest to P.

2.1. The Voronoi Diagram Approach

A Voronoi diagram is a space partitioning into cells w.r.t. to
a fixed set of points (also sites or seeds). Each cell contains
all points closest to one seed. It is clear that the DT can be
obtained by setting Voronoi sites onto the object’s boundary.

2D Voronoi diagrams can easily be determined using
rasterization techniques. Therefore, cones with a common
opening angle are placed over each seed and the result-
ing scene is rendered from top-view using the OpenGL
depth buffer function GL_LESS. Hoff et al. [HKL∗99]
extend this approach to other geometric objects and to 3D.
Sigg et al. [SPG03] and Sud et al. [SGGM06] present
GPU-based implementations of the Voronoi based approach.

2.2. The Propagation Approach

Consider a DT initialized close to δΩ in the following way:

dt0(P) =

{

(0,P) if P ∈ δΩ

(±M,∗) if P ∈ Ω± (exterior/interior)
(1)

where M is greater than any distance between grid voxels.
A propagation step for the distance works using a structure
elementM, defining a local neighborhood:

dti+1d (P) = sP min
Q∈M(P)

{
∥

∥

∥
dtiδ(Q)−P

∥

∥

∥
}. (2)

The sign sP is taken from dt
i
d(P), and dt

i+1
δ

(P) is updated
using the selected Q. See Fig. 1 for a visualization of two
sequential propagation steps.

A fast variant of this algorithm is given by Tsitsik-
lis [Tsi95]. This approach uses a priority queue approach
to optimize the order of the DT updates. Strzodka and
Telea [ST04] present a GPU based 2D approach using an
arc length parametrization for δΩ, which, in general, does
not carry over to the 3D case.

Rong and Tan [RT06] present the Jump Flooding
paradigm for general purpose computations on the GPU and
apply it to the computation of Voronoi Diagrams and DTs.
We will focus on its application to DT only.

JFA updates the whole voxel grid in each step, but varies
M in each step in order to propagate references across
longer distances. In the k-th step,M(px, py, pz) is a 3×3×3
voxel sub-grid defined as {(px ± k, py ± k, pz ± k)}. For a
voxel grid with resolution n3 the JFA can be summarized as
follows:

1. initialize the voxel grid according to Eq. (1)
2. for k = n/2,n/4, . . . ,1 do
2.1. reference (and thus distance) propagation for all vox-
els P = (px, py, pz) using M(P) = {(px ± k, py ±
k, pz± k)}

The JFAmakes log(n) loops over the whole voxel grid. Rong
and Tan [RT06] prove various properties of the JFA and
present extensions to the algorithm in order to improve the
accuracy. The two JFA variants are JFA+j, meaning that j
additional propagation steps with step-size 2 j−1, . . . ,1 are
performed, and JFA2, where JFA is applied twice.

In comparison to JFA, the main benefit of our approach is
an asymptotically faster run-time and better scalability be-
tween precision and speed. Moreover, caching is exploited
by storing hierarchy levels in separate textures.

3. Fast Hierarchical Algorithm

This section describes the main steps involved in our hierar-
chical algorithm.

3.1. Algorithmic Overview

Assuming a voxel grid with initialized dt according to
Eq. (1), our Fast Hierarchical Algorithm (FHA) consists of
an iterative down-sampling phase (push-down, see Fig. 2)
and an up-sampling phase (pull-up). During push-down, the
voxel grid resolution is reduced by 2 in each step, defining
M as the direct 2× 2× 2 neighborhood w.r.t. the center of
a cell on the finer level. For pull-up also 2×2×2 neighbor-
hoods are used, here w.r.t. the coarser grid. In the push-down
phase, the DT gets coarser and more imprecise. A full reduc-
tion to a single voxel is not meaningful, thus the number of
levels is limited to N < log(n). For pull-up, the DT from the
finer and the coarser level are combined.

For a voxel grid with resolution n3 the proposed FHA can
be summarized as follows:

1. initialize the voxel grid according to Eq. (1)
2. for level k = 1, . . . ,N (push-down)
2.1. reference (and thus distance) propagation for all vox-
els on the coarse grid P = (px, py, pz) using 2× 2× 2
neighborhood

3. compute DT on the coarsest level by repeating propaga-
tion steps or by using JFA

4. for level k = N−1, . . . ,0 (pull-up)
4.1. combine DT on level k+1 with DT on level k using
2×2×2 neighborhood

c© The Eurographics Association 2007.

94

N. Cuntz & A. Kolb / Fast Hierarchical 3D Distance Transforms on the GPU

Q4 Q3

P

Q1 Q2

dtδ(P) = dtδ(Q2)

S

P
∆

Q

dtδ(Q)

Figure 2: Push-down (left): Computing k+1 dt for samples in
a coarse grid. The closest ref. point w.r.t. level k triggers the

push-down to level k+1— error (right): dtδ(Q) is closer to
Q than S while S is closer to P than dtδ(Q).

The FHA usually incorporates j additional steps on each
level during pull-up, yielding FHA+ j, either using standard
3× 3× 3 propagation steps (see Eq. (2)) or JFA steps for
k = 2 j−1, . . . ,2,1. Clearly, the FHA is an approximate algo-
rithm. Fig. 2, right, shows a situation where an error occurs.

3.2. Push-down

In the push-down pass (from fine to coarse resolution), dis-
tance information for voxels touching the object boundary
are propagated to lower hierarchy levels.

This is done by super-sampling surrounding voxels, using
a factor of 2 in each dimension. The DT k dt is combined and
propagated from level k to level k+ 1 using the following
update rule (see Fig. 2, left):

k+1 dtd(
k+1
P) = sk+1P · min

kQ∈N2(k+1P)
{
∥

∥

∥

k dtδ(
k
Q)−k+1 P

∥

∥

∥
}

with sign taken from k dtd(
k+1P), and k+1 dtδ(

k+1P) is up-
dated using the selected kQ. Here, kP andN2 denote a voxel
on level k and the super-sampling neighborhood for the re-
duction factor 2, respectively. Note that the voxels initialized
with ±M are properly handled in the next level, i.e. the ref.
is set for k+1P if at least one kQ∈N2(

k+1P) has a valid one.

We store all 3D voxel grids as stacks of 2D textures, yield-
ing fast grid updates on the GPU.

3.3. Pull-up

For now, we assume that the correct DT k dt for the coarse
level is given. This is clearly the case for the coarsest level,
because for this level, we calculate k dt explicitly (Sec. 3.1).
The pull-up pass (from coarse to fine resolution) works in
much a similar way as push-down (Sec. 3.2). Eight surround-
ing samples in the coarse grid around a voxel P are checked
and the minimal distance determines the reference point for
P. Since we have already written distance information near
to the object boundary, this step is only performed for points
which contain ±M as distance. Note that this can be done
because each level is stored separately.

Figure 3: One DT slice for a notched sphere (left) and the

Stanford bunny (right) — FHA+2, 1283 grid, push-down un-
til 83 voxels; neg. distance are green, pos. blue; 28 FPS

As mentioned before, the result after a pull-up pass is an
approximation of k−1 dt. To correct the error, we follow two
strategies: First, FHA+ j performs j additional propagation
steps on each level. Second, the voxels surrounding the ref-
erence point S′ =k−1 dtδ(

k−1P) resulting from the pull-up
step in the same level are used for a refinement:

k−1 dt′d(
k−1P) =

sk−1P · min
k−1Q′∈N2(S′)

{
∥

∥

∥

k−1 dtδ(
k−1
Q

′)−k−1 P
∥

∥

∥
}

with sign taken from k−1 dtd(
k−1P), and k−1 dt′δ(

k−1P) is

updated using the selected k−1Q′.

Ideally, one would like a pull-up that generates k−1 dt
from k dt without any error, using a minimal number of prop-
agation steps j on each level. Unfortunately, the optimal j is
hard to determine, even though a constant error bound for
k−1 dt can be given for the general situation.

4. Results and Conclusion

FHA has been tested using implicit and predefined geome-
tries stored as voxel data (hardware: GeForce 8800 GTS).
Fig. 3 shows the computed distance field for two examples.

4.1. Performance & Error and Comparison with JFA

To compare both algorithms, we use the following quality
measures: rel. # wrong voxels, avg. distance error w.r.t the #
wrong voxels and max. distance error (in voxel), i.e.

evoxel =
of wrong voxels

voxels
, eavg =

∑ |dtd(P)−dt
∗
d (P)|

wrong voxels

emax =max{
∣

∣dtd(P)−dt
∗
d (P)

∣

∣}

where dt∗ is the correct DT. The tests have been performed
on a 323, 643 and 1283 grid using the notched sphere.
Comparing the performance, FHA is significantly faster than
JFA (Fig. 4). A run-time analysis of the fragment programs
involved in our algorithm shows that the push-down and
the pull-up are texture-fetch-bounded, whereas the distance
propagation is computation-bound.

The evaluation of accuracy (Fig. 5) when taking a large

c© The Eurographics Association 2007.

95

N. Cuntz & A. Kolb / Fast Hierarchical 3D Distance Transforms on the GPU

0

50

100

150

200

+16+8+4+3+2+1+00

P
e

rf
o

rm
a

n
c
e

 i
n

 F
P

S

Number of additional steps

Performance

FHA 64
3

JFA 64
3

FHA 128
3

JFA 128
3

Figure 4: Frame rates for JFA and FHA dep. on the number

of additional propagation steps (object: notched sphere).

Notched sphere, 643 , 32457 seeds

FHA +0 +1 +2 +3 +4 +8 +16

eavg 0.083 0.047 0.04 0.035 0.028 0.021 0.022

emax 1.41 0.375 0.266 0.211 0.156 0.125 0.109

evoxel % 35.312 7.607 5.019 3.686 2.618 1.314 0.529

JFA +0 +1 +2 +3 +4 − −

eavg 0.032 0.022 0.022 0.022 0.023 − −

emax 0.181 0.059 0.059 0.059 0.059 −. −

evoxel % 0.309 0.102 0.097 0.097 0.119 − −

Notched sphere, 323 , 32457 seeds

FHA +0 +1 +2 +3 +4 +8 +16

eavg 0.094 0.048 0.028 0.027 0.026 0.033 0.047

emax 0.807 0.381 0.168 0.137 0.137 0.115 0.115

evoxel % 29.569 4.852 2.637 1.910 1.511 0.369 0.201

JFA +0 +1 +2 +3 − − −

eavg 0.039 0.033 0.037 0.037 − − −

emax 0.125 0.041 0.045 0.045 − − −

evoxel % 0.128 0.012 0.024 0.024 − − −

Subdivided tetrahedron, 643

seeds

FHA+2 4 10 34 130

eavg − − − −

emax 0 0 0 0

evoxel % 0 0 0 0

seeds

JFA(+0) 4 10 34 130

eavg − − 0.262 0.107

emax 0 0 0.375 0.191

evoxel % 0 0 0 0.01

Figure 5: Error evaluation — evoxel is given in %; note that

for FHA+j, j must be in {0, . . . , log(64)−1} for res. 643.

number of seeds (i.e. initialized voxels) yields that the num-
ber of wrong pixels as well as the maximum error is signif-
icantly larger for FHA compared to JFA. The quality of the
error, however, is ambiguous. Taking the average error into
account, we find that eavg is, except for FHA+0, in the range
of 2− 4% of a voxel. When taking a sparse geometry as in-
put featuring a few hundreds of seeds, then the faster FHA+2
provides better results than JFA(+0). For this test, we used a
simple tetrahedron mesh which is subdivided consequently.

Finally, replacing the j additional propagations for FHA
using a 3×3×3 local neighborhood with the last j JFA steps

yields a slight improvement in accuracy, i.e. evoxel is reduced
up to 1% for the 643 grid.

4.2. Conclusion

FHA is faster (123 FPS for FHA vs. 11 FPS for JFA on a
1283 grid) but less accurate than JFA for large number of
seeds. For a small number of seeds, the accuracy of FHA+2
is comparable to JFA. Depending on the application, the re-
sulting errors can be acceptable and the performance advan-
tage of FHA is possibly more important in order to achieve
an overall system with interactive frame rates. An example is
given by the level set method. In particular, the hybrid parti-
cle level set technique can benefit from the reference part of
the DT for particle reseeding without requiring full accuracy.

References

[Cui99] CUISENAIRE O.: Distance transformations: Fast
algorithms and applications to medical image processing.
Ph.D. Thesis, UCL, Louvain-la-Neuve, Belgium (October
1999).

[HKL∗99] HOFF K., KEYSER J., LIN M., MANOCHA
D., CULVER T.: Fast computation of generalized Voronoi
diagrams using graphics hardware. ACM Proceedings
SIGGRAPH (1999), 277–286.

[HSS∗05] HADWIGER M., SIGG C., SCHARSACH H.,
BÜHLER K., GROSS M.: Real-time ray-casting and ad-
vanced shading of discrete isosurfaces. In Proc. EURO-
GRAPHICS (2005), pp. 303–312.

[KLRS04] KOLB A., LATTA L., REZK-SALAMA C.:
Hardware-based simulation and collision detection for
large particle systems. In Proc. Graphics Hardware
(2004), pp. 123–131.

[RT06] RONG G., TAN T.-S.: Jump flooding in gpu with
applications to vornoi diagram and distance transform. In
ACM Symposium on Interactive 3D Graphics and Games,

14–17 March, Redwood City (2006), pp. 109–116.

[SGGM06] SUD A., GOVINDARAJU N., GAYLE R.,
MANOCHA D.: Interactive 3d distance field computation
using linear factorization. In Proc. Symp. on Interactive
3D graphics & games (2006), pp. 117–124.

[SPG03] SIGG C., PEIKERT R., GROSS M.: Signed dis-
tance transform using graphics hardware. In Proc. IEEE
Conf. on Visualization (2003).

[ST04] STRZODKA R., TELEA A.: Generalized distance
transforms and skeletons in graphics hardware. In VisSym
(2004), pp. 221–230.

[Tsi95] TSITSIKLIS J. N.: Efficient algorithms for glob-
ally optimal trajectories. In IEEE Trans. on Automatic
Control (1995), pp. 1528–1538.

c© The Eurographics Association 2007.

96

