
EUROGRAPHICS 2007 / P. Cignoni and J. Sochor Short Papers

Object-Oriented Shader Design

Roland Kuck

Virtual Environments Department, Fraunhofer IAIS, Germany

Abstract

We present an extremely lightweight object-oriented framework for writing shaders. It provides a way to invoke

methods of objects from the shading language and to use references of objects as normal variables. Classes are

declared and instantiated in the application language using proxy classes. We then apply object-oriented design

to several typical shading problems showing their strength compared to the standard methods.

Categories and Subject Descriptors (according to ACM CCS): D.1.5 [Programming Techniques]: Object-oriented

Programming I.3.6 [Computer Graphics]: Methodology and Techniques

1. Introduction

Graphics hardware has become extremely programmable.

The previous fixed-function design has been exchanged with

stages that can execute an arbitrary program called a shader.

Shaders are not only used to perform the shading of the geo-

metric primitives, but can be used to transform vertices, per-

form skinning of meshes or generate meshes as well.

Today shaders are written in C-like languages. These

shaders are uploaded to specific pipeline stages. Therefore

the structure and the granularity of a shader is defined by

the hardware design and not the given problem. It is also

difficult to write maintainable and reusable code using these

languages alone.

Both problems can be solved by using object-oriented

programming. It structures the problem naturally and allows

for the development of reusable components. Shading e.g.

can be presented as a surface object that interacts with pos-

sibly multiple light source objects. Adding a light source to

a scene should then be possible by creating a light object and

connecting it appropriately.

We therefore introduce an object-oriented framework for

writing shaders. It is extremely lightweight and has no run-

time costs. It also does not hide the actual shading language

and hence can be adapted easily to new hardware features. It

provides a way to invoke methods of objects from the shad-

ing language and to use references of objects as normal vari-

ables. Classes are declared and instantiated in the application

language using proxy classes.

We then apply object-oriented design to several typical

shading problems showing their strength compared to the

standard methods. This list of problems is by no means

meant to be complete, but it was chosen to highlight the ad-

vantages of using classes and objects.

2. Related Work

One of the first higher-level shading languages was the Stan-

ford shading language [PMTH01]. Shaders are divided into

different groups depending on their purpose, e.g. surface

shaders. It closely matches the ideas of the Renderman shad-

ing language [HL90] with changes required for graphics

hardware. This abstraction makes programming easier but

also imposes restrictions. Our object-oriented framework al-

lows a similar abstraction to be used. It does not modify the

shading language but uses a library concept.

The Cg [MGAK03] and the OpenGL Shading language

[Ros06] closely resemble the way the hardware works. Only

the lowest hardware levels are abstracted using a C-like lan-

guage instead of an assembly language making larger scale,

modularized development difficult. Cg offers some support

for interfaces but has no dynamic polymorphism used in the

state pattern (see section 4.4) and uses aggregation for all at-

tributes instead of associations leading to duplication of data

when multiple classes reference the same data. It also only

provides a complex runtime API to manipulate these data

structures making them difficult to handle.

c© The Eurographics Association 2007.

65

http://www.eg.org
http://diglib.eg.org

R. Kuck / Object-Oriented Shader Design

A different approach is used by Sh [MQP02]: A C++ API

is used to write the shading code directly in C++. The in-

structions are translated to the shading language. Due to

this abstraction changes in the graphics hardware require

changes in the library. It also does not support dynamic poly-

morphism. In [MTP∗04] a shader algebra is built using Sh,

where components are connected. While the paper stresses

the fact of reusable components and easy reconfiguration,

this type of data flow design does not allow more complex

control structures as described in section 4.1.

In [MSPK06] an abstract shade tree is presented. Using

building blocks that are connected shaders can be written.

A visual representation is available. No interface to the host

application is discussed. The object-oriented approach pre-

sented here provides a richer infrastructure of which the

shading process is only one part of.

The system in [LSK∗06] has similarities to our approach.

It focuses on building complex data structures for the GPU.

No direct usage of objects to express behavior is discussed.

CUDA [NVI07] is a low-level framework to perform

computations on the GPU. It extends C and offers a library

with little support for graphics tasks. The access to the tex-

ture hardware is limited, while the rasterizer and the frame-

buffer are not accessible. Some tasks can be easier expressed

with this framework though and an extension to the object

system described here could be used to combine it with the

graphics pipeline.

3. Framework

We present a framework that consists of two dependent

parts: an object system for the OpenGL Shading Language

(GLSL) and proxy objects in C++ that are used to directly

manipulate the objects. We first describe the usage and then

give details about the implementation.

3.1. Usage

The fundamental type we added to GLSL is the reference

type and is used to access objects. Using a reference texture

to an object we can call a method like a normal function

passing the reference as the first argument:

color = TextureArray_texture2D(texture , index , uv) ;

Classes are declared in C++ as shown in figure 1. The

C++ classes have two purposes: they are used to define the

data structure of the class in GLSL and they function as a

proxy [GHJV93] to this data structure. Objects are also very

closely related. For every C++ object there exists exactly one

GLSL object. This makes lifetime management easy as one

only has to manage the C++ object.

The C++ declaration code makes heavy use of advanced

template programming like the Curiously Recurring Tem-

class TextureArray ;

class HardwareTextureArray :

public Shader<HardwareTextureArray , TextureArray>

{

public :

HardwareTextureArray(l i s t <Image> t i l e s) ;

/∗ vir tual ∗/ vec3 texture2D(int_ index , vec2 uv)

{ return invoke<vec3>("HardwareTA_texture2D") ; };

private :

/ / Declare attributes as usual in C++

sampler2DArray<uniform> texture ;

DERIVED_DECL(HardwareTextureArray , TextureArray)

};

CLASS_INIT(HardwareTextureArray , "TextureArray . g ls l " ,

(texture2D) , (texture))

class EmulatedTextureArray :

public Shader<EmulatedTextureArray , TextureArray>

{

public :

EmulatedTextureArray(l i s t <Image> t i l e s) ;

/∗ vir tual ∗/ vec3 texture2D(int_ index , vec2 uv)

{ return invoke<vec3>("EmulatedTA_texture2D") ; };

private :

sampler2D<uniform> texture ;

int_<uniform> num_rows;

vec2<uniform> scale ;

DERIVED_DECL(EmulatedTextureArray , TextureArray)

};

CLASS_INIT(EmulatedTextureArray , "TextureArray . g ls l " ,

(texture2D) , (texture) (num_rows)(scale))

Figure 1: Class declaration of two derived classes of Tex-

tureArray. The declaration of the base class is omitted.

plate Pattern [Cop96] and some static data structures (hid-

den by the macros DERIVED_DECL and CLASS_INIT) to

compensate for the lack of introspection support in C++.

The exported attributes of the C++ class can be hidden just

like any other member variable of a C++ class. This can be

used to offer a more convenient interface to the host applica-

tion and to ensure encapsulation from the implementation.

The exported methods are not meant to be called directly

from C++ but are only used to declare the required function

signature. The implementation of the C++ class returns the

name of the GLSL function to be called when the method is

invoked. We need to specify this function as in figure 2.

c© The Eurographics Association 2007.

66

R. Kuck / Object-Oriented Shader Design

vec3 HardwareTA_texture2D(HardwareTextureArray_SELF ,

int index , vec2 uv)

{

vec3 coord = vec3(uv , f loat (index)) ;

return texture2DArray (texture , coord) ;

}

vec3 EmulatedTA_texture2D(EmulatedTextureArray_SELF ,

int index , vec2 uv)

{

f loat u = floor (index / num_rows) ;

f loat v = mod(index , num_rows) ;

vec2 coord = scale ∗ vec2(u , v) ;

return texture2D(texture , uv∗scale + offset) ;

}

Figure 2: Implementation of classes in GLSL. The simplified

emulation code does not correctly sample the border of tiles.

#define HardwareTextureArray_SELF \

OBJREF self , sampler2DArray texture

uniform sampler2DArray obj_0x1_texture ;

uniform sampler2DArray obj_0x2_texture ;

vec3 TextureArray_texture (OBJREF self ,

int arg1 , vec2 arg2)

{

i f (se l f == 1)

return HardwareTA_texture2D(self , obj_0x1_texture ,

arg1 , arg2) ;

else i f (se l f == 2)

return HardwareTA_texture2D(self , obj_0x2_texture ,

arg1 , arg2) ;

/ / Default return value

return vec3 (0 . , 0 . , 0 .) ;

}

Figure 3: Generated GLSL dispatcher code for two in-

stances of HardwareTextureArray

3.2. Implementation

The exact definition of the reference type can be useful to

encode this information into the vertex data or a texture. We

therefore see this definition as part of the interface and not

as an implementation artifact.

References are simple integer numbers. All referenced

objects are enumerated and these numbers are used in the

GLSL code. A dispatch function is automatically generated

(see figure 3). Normally the object references are constants

and therefore the dispatch code is optimized out. Using ob-

jects thus does not influence the performance of the program.

Object references do not need to be constant and we describe

such a situation in section 4.4. If a method is called with an

object reference to an object that does not exist, the default

behavior is to provide a standard return value. This is defined

behavior and can thus be relied on (see section 4.1).

We also support a list data type. To achieve this aliases

for the object numbers are created and all the objects in one

list get assigned additional consecutive numbers. A list can

then be represented by the start and the end value and these

references act like iterators [GHJV93].

One method is given as the entry point of a shader. All

required objects that are directly or indirectly referenced are

automatically collected. A single object can be used in dif-

ferent pipeline stages at the same time (see section 4.3).

4. Application

We apply the framework described above to selected prob-

lems typically encountered in shader programming. They

should provide a good idea of how the object-oriented de-

sign works in the shader programming context.

4.1. Illumination and Shading

The standard use of a shader is to calculate the color of an

illuminated surface element. This usually involves a surface

material and possibly several light sources. We need to eval-

uate the BRDF of the material given by some shader code

for each light source. It therefore seems logical to model the

material and the light source as classes and iterate over a list

of light source objects in the material class and retrieve the

received light amount from each. But what happens if some

materials react differently to certain kinds of light sources?

A example for this is given in [AG99]: UV light.

We can use the visitor pattern [GHJV93] or rather the dou-

ble dispatch technique here. The implementation for the ma-

terial calls an illuminance() method of the light source and

passes a reference to itself. The light source then calculates

the light direction and the intensity and calls illuminate() on

the material object passing this information along. It can also

call illuminate_uv() to let the material receive UV light. Ma-

terials that are not sensitive to UV light simply do not imple-

ment this method.

4.2. Texture Array Access

A new feature of modern graphics hardware is texture arrays

[Bly06]. These are multiple 2D textures that are bound to the

same texture unit and that can be selected at runtime using an

index. On older hardware this can be emulated by tiling the

different textures in one larger 2D texture and transforming

the texture coordinates in the shader.

The layout of the tiles has to be stored in addition to the

sampler parameter. We can hide the details by using classes.

Two implementations are given: One for the hardware that

c© The Eurographics Association 2007.

67

R. Kuck / Object-Oriented Shader Design

exposes direct support for texture arrays and the other one

that provides the emulation (see figures 1, 2 and 3).

The C++ interface can be designed to present the host ap-

plication a uniform interface hiding the texture binding pro-

cess. A factory [GHJV93] can create the instances depend-

ing on the capabilities of the used graphics hardware.

4.3. Shared Data

There are two situations in which data needs to be shared:

The data from different pipeline stages in the graphics hard-

ware is propagated to the next stage and therefore shared. It

is also possible that different stages require the same infor-

mation and thus require shared data.

Different shading languages provide direct support for the

first problem. In Cg the data from the previous stage is pro-

vided as arguments to the entry function of the next. Thus it

is required that the entry point knows about all shared data.

In GLSL these values are global parameters but global vari-

ables expose the data directly to the whole shader code.

Using objects we can provide a much cleaner solution:

Use one object in multiple pipeline stages at the same time.

Shared data is then identical in all stages. Data written in

one stage and read from another can also be used by sim-

ply declaring attributes with the appropriate qualifiers, e.g.

varying for the connection of vertex and fragment shaders.

We can also provide different interfaces for different stages

to encapsulate the implementation.

4.4. State

Assume we are implementing a particle system. We want to

color different groups of particles in different ways: Some

are colored with a fixed color, while others are illuminated

using a light source. If each particle contains a group identi-

fier we can use if-then constructs to check the type and han-

dle each case appropriately.

Maintaining the dispatch function is an unnecessary bot-

tleneck. The state pattern [GHJV93] provides a simple so-

lution. It uses the polymorphic dispatch function and one

simply associates a state object with each particle. As the

reference to an object is an integer we can store it in the ver-

tex data and invoke the methods in the shader.

5. Conclusion and Future Work

We discussed object-oriented design in the context of shad-

ing and showed how it improves the design. We also intro-

duced a lightweight framework to apply these methods.

As described above the framework relies on the compiler

to optimize out the dispatch functions. Our tests show that

the compiler does perform this optimization reliably. A pre-

processor can reduce this dependency but it needs to be up-

dated with new revisions of the shading language.

The object system creates a tight coupling between the

C++ and the GLSL parts of the program. This can make it

difficult to reuse the shading objects in other languages. Nor-

mal methods to access objects from other languages can be

used, e.g. automatically generated wrappers.

We are interested to continue this research and evaluate

more complex and larger shading algorithms in the context

of object-oriented design.

References

[AG99] APODACA A. A., GRITZ L.: Advanced Render-

Man: Creating CGI for Motion Picture. Morgan Kauf-

mann Publishers Inc., 1999, pp. 222–224.

[Bly06] BLYTHE D.: The Direct3D 10 system. In Proc.

SIGGRAPH ’06 (2006), ACM Press, pp. 724–734.

[Cop96] COPLIEN J. O.: A curiosly recurring template

pattern. InC++Gems (1996), Lippman S. B., (Ed.), Cam-

bridge University Press, pp. 135–144.

[GHJV93] GAMMA E., HELM R., JOHNSON R., VLIS-

SIDES J.: Design Patterns: Abstraction and Reuse of Ob-

ject - Oriented Design. Addison Wesley Longman Pub-

lishing Co., Inc., 1993.

[HL90] HANRAHAN P., LAWSON J.: A language for

shading and lighting calculations. In Proc. SIGGRAPH

’90 (1990), ACM Press, pp. 289–298.

[LSK∗06] LEFOHN A. E., SENGUPTA S., KNISS J., STR-

ZODKA R., OWENS J. D.: Glift: Generic, efficient,

random-access gpu data structures. ACM Trans. Graph.

25, 1 (2006), 60–99.

[MGAK03] MARK W. R., GLANVILLE R. S., AKELEY

K., KILGARD M. J.: Cg: A system for programming

graphics hardware in a c-like language. In Proc. Siggraph

’03 (2003), pp. 896–907.

[MQP02] MCCOOL M. D., QIN Z., POPA T. S.: Shader

metaprogramming. In Proc. SIGGRAPH/Eurographics

Graphics Hardware Workshop ’02 (2002), Eurographics

Association, pp. 57–68.

[MSPK06] MCGUIRE M., STATHIS G., PFISTER H.,

KRISHNAMURTHI S.: Abstract shade trees. In Proc. Sym-

posium on Interactive 3D graphics and games ’06 (2006),

ACM Press, pp. 79–86.

[MTP∗04] MCCOOL M., TOIT S. D., POPA T., CHAN

B., MOULE K.: Shader algebra. In Proc. SIGGRAPH ’04

(2004), ACM Press, pp. 787–795.

[NVI07] NVIDIA: CUDA Programming Guide, 2007.

[PMTH01] PROUDFOOT K., MARK W. R., TZVETKOV

S., HANRAHAN P.: A real-time procedural shading sys-

tem for programmable graphics hardware. In Proc. SIG-

GRAPH ’01 (2001), ACM Press, pp. 159–170.

[Ros06] ROST R. J.: OpenGL(R) Shading Language. Ad-

dison Wesley Longman Publishing Co., Inc., 2006.

c© The Eurographics Association 2007.

68

