
EUROGRAPHICS 2007 / P. Cignoni and J. Sochor Short Papers

Fast GPU-based Visibility Computation for Natural
Illumination of Volume Data Sets

Tobias Ritschel, Institute for Computational Visualistics, University Koblenz-Landau

Figure 1: After a few seconds of pre-calculation, volume data is rendered with natural illumination and soft shadows in realtime.
The correct directional shadowing can be seen from the colored shadow cast inside the hollow tube using the kitchen light probe.

Abstract
Pre-computed radiance transfer (PRT) has been used to render volumetric data under distant low-frequency
illumination at real-time rates, including natural illumination, soft shadows, attenuation from semi-transparent
occluders and multiple scattering. PRT requires a lengthy pre-process, which is acceptable only for static volume
data. However, in practical volume rendering, general transfer functions are used. Manipulating such a transfer
function will result in a dynamic radiance transfer which has to be re-computed. This work proposes a fast way
for this re-computation. While previous work has used CPU Monte Carlo ray-tracing for pre-computation and
requires time in the order of many minutes, our GPU implementation uses a hierarchical visibility approximation
implemented entirely on the GPU and requires only a few seconds for typical scenes.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [COMPUTER GRAPHICS]: Three-Dimensional
Graphics and Realism; I.3.3 [COMPUTER GRAPHICS]: Color, Shading, Shadowing and Texture

1. Introduction

Physically plausible lighting and shadowing for volume ren-
dering is relevant for several reasons. First, shape perception,
can be enhanced substantially by correct occlusion [Ste03].
Furthermore, the usage of natural lighting can enhance the
perception of orientation of volumetric features. Shadows
give additional visual cue of a feature’s density: A dense
feature will cast a more pronounced shadow. Besides that,
interactive applications like games have an ever growing de-
mand of visual realism that also includes volumetric effects
like clouds, steam and smoke.

Rendering such effects at real-time rates has been demon-
strated [SKS02] but required a lengthy pre-computation
(PRT) that does not allow the volume or its transfer func-

tion to change. This work contributes a fast approach for this
re-computation, because changing a volume is a typical oper-
ation in visualization: A user inspects a volume under high
quality illumination at real-time rates by arbitrarily moving
the camera, rotating the volume and changing the lighting.
When the transfer function is changed, the radiance transfer
is updated after a few seconds. This allows to use progressive
PRT, where lighting details are added incrementally. Such a
partial solution has no visual degradation compared to usual
direct volume rendering – only the occlusion lacks details.

This paper is structured as follows: In Sec. 2 we review
previous work and describe our approach in Sec. 3 for which
results are presented in Sec. 4 before we conclude with Sec. 5.

c© The Eurographics Association 2007.

57

http://www.eg.org
http://diglib.eg.org


T. Ritschel / Fast GPU-based Visibility Computation for Natural Illumination of Volume Data Sets

2. Previous Work

The practical relevance of occlusion effects for shape percep-
tion is outlined by Stewart [Ste03]. Recent graphics hardware
(GPUs) has made interactive high quality volume visualiza-
tion possible [EHK∗04]. Several researchers have included
physically motivated illumination effects in volume rendering.
Kniss et al. [KPHE02] simulate translucent volumes illumi-
nated by a single directional light. Shadows in volumes from
single directional light sources using deep shadow maps were
demonstrated at interactive rates [HKSB06]. PRT [SKS02]
has been used for low-frequency volume shadows. The work
of Banks et al. [BB07] and Wyman et al. [WPSH06] demon-
strate high quality volume rendering of iso-surfaces including
soft shadows and indirect lighting. However, they require a
lengthy pre-calculation and restrict lighting to be a function
of the iso-value. We generalize this idea to arbitrary transfer
functions, and handle iso-surfaces as a special case.

3. Our Approach

The emission-absorption volume rendering equation [Max95]
for an isotropic medium is

L =
∞∫

0

E(x(t))A(t)dt

E(x) =
∫
Ω

τρ (D(x))V (x,ω)Li(ω)dω

A(t) = exp(−
t∫

0

τα (D(x(s)))ds).

Here, E(x) is the emission at location x and A(t) is the ab-
sorption at t. The volume density at location x is denoted as
D(x). A transfer function τ maps a density value y to trans-
parency τα (y) and diffuse albedo τρ (y). The incoming light
Li(ω) from direction ω is assumed to be independent of x.

Central to our approach is the visibility V (x,ω) at loca-
tion x in direction ω . We compute and store a full visibility
function and not just a single average constant [Ste03] or a
visibility for a single direction [KPHE02, HKSB06]. We de-
note this visibility field with V , where each voxel at location
x stores visibility as a function of ω . Spherical harmonics
(SH) have shown good results [SKS02, BB07, WPSH06] and
will also be used to store an approximation of V denoted with
V̄ in this work. Therefore, two key components are required:
One to compute V̄ and one to visualize a density volume D
under a given illumination Li(ω) using V̄ . They are outlined
in the following two sections.

3.1. Pre-Computaion

All pre-computation is done entirely using a GPU. To com-
pute V̄ from D, every voxel in V is traversed by drawing
full-screen quads into all slices of a three-dimensional texture

where one pixel corresponds to one voxel at location x. The
visibility function V (x) is projected on the SH basis using
Monte Carlo methods. This requires to evaluate V in N sam-
ple directions ω1, . . . ,ωN . To do this, we use a variant of DVR
(Direct Volume Rendering) that simulates absorption only
(no emission): A ray is started from x in direction ωi and the
absorption in D is evaluated front-to-back, including early ray
termination. Repeating this with many uniformly distributed
random samples gives the SH approximation V̄ m

l (x) of V (x):

V̄ m
l (x) =

1
N

N

∑
i=1

V (x,ωi)Y m
l (ωi), (1)

where Y m
l (ω) is the SH basis l of some order m in direction

ω . Finally V̄ m
l (x), which is a vector of SH-coefficients, is

quantized to 8 bit / coefficient. Up to four coefficients per
texture can be rendered, using multiple render targets. Using
integer textures, current GPUs allow up to 16 coefficients,
packed into four 32 bit integer color values. Typically 4 or 16
coefficients are used.

Hierarchical Visibility Using this representation allows to
evaluate visibility in a certain direction from a certain po-
sition using a compact, pre-comptated SH field. However,
computing V̄ is costly for three reasons: The high spatial res-
olution of V̄ (e.g. 2563), the number of sample directions (e.g.
N = 500) and the number of DVR steps (e.g. 256 steps) when
computing V (x,ωi), . . . ,V (x,ωN) . Decreasing the resolution
of V̄ is straightforward but compromises shadow details (See
Fig 4). A lower N will result in Monte Carlo noise, and miss
angular details. Approximating V (x,ωi) appears to be most
suitable. However, simply using a low number of steps will
not give a smooth approximation and ignore shadows of thin
features entirely. We therefore make the simplifying assump-
tion that regions which are distant to x can be approximated
by a slow varying, low-resolution expected opacity volume
O. This works because the projected solid angle for a feature
of constant size decreases with the squared distance. Exactly
locating and knowing the opacity variation across such a fea-
ture therefore becomes less important, most of all when using
a band-limited SH representation for visibility anyway. This
allows to traverse the volume with increasing step sizes and
decreasing spatial resolution (See Fig. 2) in a logarithmic
way when evaluating Eqn. 1.

We form a hierarchy of approximations O1...K , which is
similar to a three-dimensional MIP map, but with a special
minification filter. The default OpenGL way to compute lower
MIP levels is suitable for reflectance in diffuse textures or irra-
diance [CB04]. However, using a linear filter (weighted sum)
for expected opacity is not suitable. The ideal way to com-
pute the expected opacity for voxel v is to average all possible
path-integrals of absorption across v, which is intractable in
practice. Instead, Oi+1 is construct iteratively from Oi. First,
the expected opacity value for each voxel in O0 is computed.
This is done by integrating absorption (applying τα to D)

c© The Eurographics Association 2007.

58



T. Ritschel / Fast GPU-based Visibility Computation for Natural Illumination of Volume Data Sets

across each voxel in the x, y and z direction, which is a mix of
pre-classification and pre-integration [EHK∗04]. Here, den-
sities (before classification) are converted to opacities (after
classification). This is done, because averaging densities does
not make sense (See Fig. 2) with arbitrary transfer functions,
while averaging opacities does.

b
(a+b)/2

a
x

ωi

Figure 2: Left: Averaging density a and b misses details
from the transfer function. Right: Traversal with increasing
step size.

Higher levels are then computed as

Di+1(x) =
1

64

1

∑
j1=0

· · ·
1

∑
j6=0

Di(2x+

 j1
j2
j3

) ·Di(2x+

 j3
j4
j5

).

This models the expected absorption as the traversal of all
possible combinations of two successive voxels (See Fig. 3).
As an example, consider a ray hitting an opaque voxel: The

Figure 3: A simplified minification example, assuming two-
dimensions, binary opacities and discrete directions. Minifica-
tion by box-filtering will result in 0.5 for both configurations.
However, in the left configuration, more rays are blocked than
for the right configuration. Our minifications accounts for
this difference.

ray is not expected to become less blocked from hitting an-
other semi-opaque occluder. This is what averaging would
result in, while multiplication behaves correctly. Note, that
O1...K is built only to accelerate the construction of V̄ – it is
not used in rendering at all. The minification is implemented
on a GPU and takes only slightly longer then a standard MIP
map creation. At runtime, O1...K is sampled using the default
trilinear mip-map filtering implemented in hardware, which
gives the desired smoothness. The MIP level is selected man-
ually proportional to the step size.

Sampling Implementation Details Monte Carlo computa-
tion with GPUs requires special attention as the random na-
ture of Monte Carlo samples is a contradiction to the com-
putational coherence required for good GPU performance. It
has shown that jittered samples perform well when solving
low-dimensional integration problems (where the curse of di-
mensionality is not a problem). This is, because the resulting
memory and computation pattern is to some extent random
and to some extent coherent at the same time: The i-th jittered
sample direction will traverse the volume in roughly the same
way. Besides that, the resulting integration quality is better.
We therefore generate M jittered sample patterns with N sam-
ples each and store them into a two-dimensional texture. Each
pattern stores N sample directions ωi and the value Y m

l (ωi).
For each x a different pattern is chosen randomly.

3.2. Runtime

Rendering means to generate a final image from D and V̄ us-
ing distant lighting Li. First Li is also projected on the chosen
SH basis as L̄i for each color channel. Then, direct volume
rendering (DVR) or direct iso-surface rendering (DIR) is
used [EHK∗04]. For DVR, emission and absorption is inte-
grated along a view ray, requiring multiple evaluations of E.
For DIR, the smallest t0 such that τα (D(x(t0)) = 0 is found
by ray-marching and a final binary search, requiring a single
evaluation of E at t0.

In both cases the emission E(x) is not a constant anymore
but depends on incoming radiance Li, visibility V (x) and
albedo ρ = τρ (D(x)). To evaluate E, we compute:

E(x) =
∫
Ω

ρV (x,ω)Li(ω)dω ≈ ρL̄i ·V̄ (x).

In other words, the following steps have to be done in a
fragment program:

• Load density y = D(x)
• Load albedo ρ = τρ (y)
• Load visibility v̄ = V̄ (x)
• Compute emission as a dot product of coefficents ρ(v̄ · L̄i)

For a typical case (see Fig. 1) this requires one texture read
for y, a texture read from the transfer function at y and four
texture reads for v̄ together with a dot product over a 16-vector
in 4 instructions.

4. Results

The timings and quality achieved are demonstrated in Tbl. 1.
The system used is an Intel Core 2 Duo 6300 and an Nvidia
Geforce 8800 GTX. A sub-sampling ratio of 1 : 2 or 1 : 4
gives the best ratio between time and quality whereas full
1 : 1 resolution is still to slow to be practical (See Fig. 4). The
directional shadow quality can be seen in Fig 1: The shadow
inside the hollow tube clearly reproduces the natural illumi-
nation from the kitchen environment map where red shadows

c© The Eurographics Association 2007.

59



T. Ritschel / Fast GPU-based Visibility Computation for Natural Illumination of Volume Data Sets

Figure 4: Varying resolution of V̄ for the engine block dataset. Renderings from a low-resolution V̄ are slightly brighter because
opacity can not increase as fast as in V̄ at higher resolutions.

appear when blue light is blocked and blue shadows can be
seen when red light is blocked. The dynamic illumination
effects can be seen in the accompanying video.

Rate Mem.
Setup (s) Runtime (ms)

DVR ISO DVR ISO

E
ng

in
e 1 : 1 256 MB 70.4 40.8 71.2 17.2

1 : 2 64 MB 12.3 7.6 45.6 15.7
1 : 4 16 MB 4.0 2.6 40.2 12.6
1 : 8 4 MB 2.3 1.5 36.1 9.5

Fo
ot

1 : 1 256 MB 70.4 40.8 75.8 23.4
1 : 2 64 MB 12.3 8.2 45.8 14.0
1 : 4 16 MB 4.0 2.6 41.0 11.2
1 : 8 4 MB 2.3 1.2 38.2 13.6

Table 1: Timings for different scenes from Fig. 1 and Fig. 4.
The iso-value used is 0.8 and N = 400. The screen resolution
is 1024 × 768.

5. Conclusion

We have demonstrated that our approach can render soft
shadowing in volumes under varying natural illumination at
real-time rates. When the volume is deformed or the transfer
function has changed a pre-computation is carried out at
near-interactive rates, which is an order of magnitude faster
than previous CPU-variants, saves main memory, has better
quality and supports arbitrary transfer functions at the same
time.

For future work, we would like to use wavelets [NRH03]
to allow more high frequency and view-dependent effects.
The current use of SHs will not reproduce point-light-style
sharp shadows – the same problem as encountered with SH
surface shading. We would also like to experiment with more
elaborate opacity or visibility approximations. The final ob-
jective however, is to have a fully dynamic volume with no
pre-computation at all.

References

[BB07] BANKS D. C., BEASON K.: Fast Global Illumination for
Visualizing Isosurfaces with a 3D Illumination Grid. Computing
in Science and Engineering 9, 1 (2007), 48–54.

[CB04] CHRISTENSEN P. H., BATALI D.: An Irradiance Atlas for
Global Illumination in Complex Production Scenes. In Rendering
Techniques (2004), Keller A., Jensen H. W., (Eds.), Eurographics
Association, pp. 133–142.

[EHK∗04] ENGEL K., HADWIGER M., KNISS J. M., LEFOHN A.,
REZK-SALAMA C., WEISKOPF D.: Real-time volume graphics.
In Course 28 at ACM SIGGRAPH (2004).

[HKSB06] HADWIGER M., KRATZ A., SIGG C., BÜHLER K.:
GPU-Accelerated Deep Shadow Maps for Direct Volume Render-
ing. In SIGGRAPH/Eurographics Graphics Hardware (9 2006).

[KPHE02] KNISS J., PREMOZE S., HANSEN C., EBERT D.: In-
teractive Translucent Volume Rendering and Procedural Modeling.
In VIS ’02: Proceedings of the conference on Visualization ’02
(Washington, DC, USA, 2002), IEEE Computer Society, pp. 109–
116.

[Max95] MAX N.: Optical Models for Direct Volume Rendering.
IEEE Transactions on Visualization and Computer Graphics 1, 2
(1995), 99–108.

[NRH03] NG R., RAMAMOORTHI R., HANRAHAN P.: All-
frequency shadows using non-linear wavelet lighting approxi-
mation. ACM Trans. Graph. 22, 3 (2003), 376–381.

[SKS02] SLOAN P.-P. J., KAUTZ J., SNYDER J.: Precomputed
Radiance Transfer for Real-time Rendering in Dynamic, Low-
frequency Lighting Environments. ACM Trans. Graph. 21, 3
(2002), 527–536.

[Ste03] STEWART A. J.: Vicinity Shading for Enhanced Percep-
tion of Volumetric Data. In IEEE Visualization (2003), Turk G.,
van Wijk J. J., II R. M., (Eds.), IEEE Computer Society, pp. 355–
362.

[WPSH06] WYMAN C., PARKER S., SHIRLEY P., HANSEN

C. D.: Interactive Display of Isosurfaces with Global Illumi-
nation. IEEE Trans. Vis. Comput. Graph. 12, 2 (2006), 186–196.

c© The Eurographics Association 2007.

60




