EUROGRAPHICS 2007 / P. Cignoni and J. Sochor

Automated Combination of Real-Time Shader Programs

Matthias Trapp]L and Jiirgen Déllnert

Hasso Plattner Institut, University of Potsdam, Germany

Abstract

This work proposes an approach for automatic and generic runtime-combination of high-level shader programs.
Many of recently introduced real-time rendering techniques rely on such programs. The fact that only a single
program can be active concurrently becomes a main conceptual problem when embedding these techniques into
middleware systems or 3D applications. Their implementations frequently demand for a combined use of indi-
vidual shader functionality and, therefore, need to combine existing shader programs. Such a task is often time-
consuming, error-prone, requires a skilled software engineer, and needs to be repeated for each further extension.
Our extensible approach solves these problems efficiently: It structures a shader program into code fragments,
each typed with a predefined semantics. Based on an explicit order of those semantics, the code fragments of
different programs can be combined at runtime. This technique facilitates the reuse of shader code as well as the
development of extensible rendering frameworks for future hardware generations. We integrated our approach
into an object-oriented high-level rendering system.

Categories and Subject Descriptors (according to ACM CCS): 1.3.1 [Computer Graphics]: Graphics processors; 1.3.6
[Computer Graphics]: Languages; 1.3.8 [Computer Graphics]: Applications; D.1.2 [Programming Techniques]:

Short Papers

Automatic Programming

Figure 1: Example for the automated combination of dis-
placement and normal mapping shaders.

1 Introduction

Today, programmable graphics hardware comes along with a
main conceptual problem: it is only possible to have a single
active shader program that replaces parts of the fixed func-
tion rendering pipeline and becomes part of the rendering
context [Mar06]. This usually results in a large number of
independent shaders for multiple variations of rendering.

Based on current technology, individual shaders cannot be

i matthias.trapp@hpi.uni-potsdam.de
1 doellner@hpi.uni-potsdam.de

(© The Eurographics Association 2007.

53

combined automatically because there are neither explicit
shading language features for shader combination nor do
typical shaders allow us to easily identify and reuse their
functionality. This often requires a skilled programmer who
is able to develop a new shader, whose functionality is a
combination of the respective features. This aspect is an
antagonism to the generic characteristics of a scene-graph
based high-level graphics API.

The effective use of shader programs in a high-level graphic
middleware includes the ability to reuse them and requires
the combination or nesting of their functionality. Each pro-
gram covers three areas of functionality with each being rep-
resented by a single specialized shader: vertex, geometry,
and fragment shader. Reusing such programs saves expenses
for repeated optimizations and debugging. This cannot be
accomplished with existing data structures that bridges the
gap between designer and programmer [MSPKO06]. If we
want to use shaders in a stand-alone way as well as to de-
rive combined variants (Fig. 1) within a scene graph based
rendering system, one encounters the following two prob-
lems:

e Permutation: In current engines or frameworks many
shaders are variations and combinations of basic function-

delivered by
|

www.eg.org

EUROGRAPHICS
DIGITAL LIBRARY



http://www.eg.org
http://diglib.eg.org

Matthias Trapp & Jiirgen Déllner / Automated Combination of Real-Time Shader Programs

ality (e.g., material LOD approximations [OKS03], light-
ing models, animation, skinning). Creating and managing
these permutations efficiently are two key requirements
for systematic and cost-efficient development of real-time
high-end 3D applications.

o Independence: Modern shader-driven engines [Ben(2],
frameworks or middleware utilize the concept of a shader
library [AV02]. To achieve a generic solution, one has to
ensure that multiple instances of shader permutations can
interact and perform independent from each other.

The permutation problem can be solved by generating
various shader source codes from source code fragments
[McGOS5]. These fragments cannot be executed indepen-
dently. The approach is limited to a known number of
shader fragments and combinations. The so-called uber-
shader [Har05] or super-shader is designed to reduce costly
context switches of driver and hardware, which occurs when
a shader program is loaded or replaced.

Our basic idea is a generic approach for uber-shader con-
struction. It can combine shader programs that are composed
of several shader source code fragments ("shader handler"),
each with a predefined semantics. These programs can be ex-
ecuted independently and combined by invoking their han-
dlers according to a given order of semantics. To enable such
dynamic combination, our approach consists of two separate
processing steps:

1. A preprocessing step for each shader program analyzes a
tagged source code and transforms it into an intermediate
representation.

2. In the second step, these intermediate representations are
combined into a new shader program. For this, all inter-
mediate representations are concatenated, and an addi-
tional shader is generated that controls the execution of
the particular code paths.

Our main contribution is the dynamic accomplishment of the
second step at runtime and comprises an analysis of con-
trol parameters for combined programs. In addition, we ap-
ply our approach to the high-level shading language GLSL
[Kes06].

This paper is structured as follows: Section 2 shortly dis-
cusses related work. Section 3 explains the basic concept of
shader handlers. Section 4 describes their combination and
Section 5 exposes the execution mechanism. Section 6 con-
cludes the paper and outlines future work.

2 Related Work

Hargreaves [Har05] describes how to automatically gener-
ate large numbers of shader permutations from a smaller
set of input fragments. McGuire [McGO05] demonstrates a
shader framework that is able to render several effects. It
permits arbitrary combinations of rendering effects to be ap-
plied to surfaces simultaneously. It uses runtime code gen-
eration to produce optimized shaders for each surface and
a cache to reuse shaders for similar surfaces. [MSPKO06]
presented a system for authoring complex GPU programs

54

through automatic combination of primitive shading func-
tions. In [FW04] a method is suggested that combines sin-
gle functions and creates compound shaders in runtime. In
[BFH*04] a compiler and runtime system is presented that
enables the combination of stream kernels. In [MDTP*04]
this system is used to implement connection and combina-
tion operators for shader programs.

3 Handler Concept

To enable the generic combination of shader programs, it is
necessary to provide additional information [MSPKO6] for
each shader handler. This information can be evaluated at
runtime and is used to generate a combined shader program
as well as to specify the behavior of the individual handlers.
The most important information is the semantics of the han-
dler in a given context. The semantics denotes the function-
ality of a shader. In addition, information regarding the run-
time behavior of shader handlers with the same semantics
must be provided.

The assignment of such information can be implemented by
tagging the source code or by introducing new keywords to a
particular shading language. We select GLSL as testbed for
our approach. To assign a handler semantics to a source code
fragment we choose to extend the target language with an
additional keyword. Later, a preprocessor can eliminate this
syntactical overhead. The following concept can be applied
to all shader types (fragment, vertex, and geometry shader).

3.1 Prototypes

Usually, shader performs successive tasks, each of which are
well distinguishably [FW04] (e.g., lighting, transformation,
texturing, clipping). We denote such a task as prototype (P)
and assume that a shader can be decomposed into a sequence
of code fragments that are instances of them. A sequence of
prototypes is denoted as prototype list (PL).

3.2 Shader Handler

A shader handler (SH) is a source code fragment of a spe-

cific prototype. Accordingly, we redefine a shader as a set

of shader handlers. On this basis, multiple shader programs

can be combined and nested by merging their particular

shader handlers. Furthermore, a handler possesses an exe-

cution mode that defines its invocation at runtime. We iden-

tified four different execution modes for a scene graph based

system:

e Global: The handler will always be active during execu-
tion of the uber-shader program.

e Local: The handler is only active if the corresponding
shader program is active.

e Optional: The handler will be active if no handler of the
respective prototype is already active.

e Explicit: The handler will be invoked if the correspond-
ing shader program is active. Other handlers of the same
prototype will not be invoked.

The following example contains three GLSL vertex han-
dlers that represent a elementary functionality. In this case

(© The Eurographics Association 2007.



Matthias Trapp & Jiirgen Déllner / Automated Combination of Real-Time Shader Programs

Figure 2: Compositing of different effects rendered by nested shader programs. Phong-shading is combined with texture
mapping, normal mapping, and an x-ray shading effect (from left to right).

the global handlers onInit and onFinish apply the lan-
guage specific state (g1_Vertex) to the context and vice
versa. They can be placed in the root node of a scene graph.
The onTransform handler applies the viewing and pro-
jection transformation to the input vertex and will only be
invoked if no other transformation handler is active:

handler global onlnit(interface i) {
i.Position = gl_Vertex;
}
handler optional onTransform(interface 1) {
i.Position =
gl_ModelViewProjectionMatrix * i.Position;

}

handler global onFinish(interface i) {
gl_Position = i.Position;

}

3.3 Handler Interface

To enable the nesting of shader handlers, as demonstrated
in Fig. 2, it is necessary that shader handler can interact in
a certain way. This process is formulated as reading from
and writing to a global context. The structure of this con-
text should contain data that can be accessed and altered
by all shader handlers during the execution of a program.
Each shader type possesses its own context. In a technical
view, this context is mapped to the temporary shader regis-
ters. Thus, the reading and writing operations are resolved
by the shading language compiler. The interface is an im-
portant input to the preprocessing step and must be defined
in advance.

4 Shader Preprocessing

Given an ordered list of handler prototypes and a handler in-
terface, a language specific preprocessor parses each shader
program (SP) to determine the particular handlers and the
affiliation to the respective prototypes (prototype-handler

(© The Eurographics Association 2007.

55

mapping). Fig. 3 shows the data flow diagram for prepro-
cessing a single shader. In detail, this process can be divided
into four steps:

1. Identify handler and prototype from tagged source and
qualify the handler name with the name of the shader pro-
gram it is attached to.

2. Determine the execution mode of the shader handler.
Each prototype possesses a default execution mode. It
will be used if the shader handler does not specify one.

3. Generate intermediate shader code that can be interpreted
by a vendor specific compiler. The signature of each
shader handler will be modified with its qualified name
to ensure identity at source code level.

4. Store the qualified name, prototype, and execution mode
for each shader in a prototype mapping table.

5 Shader Combination

In contrast to other systems, the advantage of our approach
lies in the dynamic generation of an uber-shader program at
runtime based on the type information for each shader han-
dler. This process will be performed by a shader manage-
ment system (SMS) and includes the following steps:

Prototype
r Mapping
m
I Intermediate
Shader

ELGITY
PrOtOtypes

Figure 3: The preprocessor transforms a shader into an in-
termediate representation and determines type information
of its shader handlers for combination at runtime.



Matthias Trapp & Jiirgen Déllner / Automated Combination of Real-Time Shader Programs

1. Concatenation of the intermediate shader sources. Fur-
thermore, each handler is associated with an index into a
global handler invoker table. This table is a boolean vec-
tor that defines the activity state of a shader handler. All
will be provided to the controller shader.

2. Generation of the controller shader. It represents the entry
point of the shader program.

The maintenance and concatenation of the shader source
code is done by the SMS. It controls instances of shader
programs in a priority list (PPL). The programs are added
during the pre-traversal of the scene graph. The PPL is
used later on to generate the main function of the controller
shader. A priority can be assigned to a program that controls
its position in the PPL. The controller is a special shader that
invokes each handler if its respective invoker table entry is
set to true. It stores the order of handler execution inherently
with respect to the prototype list. The following pseudo code
shows the creation of the main function:

foreach prototype P € PL do
foreach shader program SP € PPL do
foreach shader handler SH € SP do
if (prototype(SH) = P) do
appendlfStatement(SH )

6 Shader Execution

Once the uber-shader source is created, the system must
be able to control the execution of the particular shader
handler associated with a program. By activating the
shader program, the invoker table entries for each han-
dler will be set according to its execution mode and
the activity states of all other shader handler will be
adapted. The generated controller evaluates the invoker
table and executes the respective shader handler in a
particular order. The following GLSL code fragment
of a generated vertex controller demonstrates the usage
of the interface, the invoker table, and the controller:

uniform bool vertexHandlerlInvokerTable[6];
struct VertexContext {..} Context;

void main(void) {
iT(vertexHandlerlInvokerTable[0])
shaderAonlnit(Context);
iT(vertexHandlerlInvokerTable[1])
shaderBonTransform(Context);
if(vertexHandlerlInvokerTable[2])
shaderConTransform(Context) ;
if(vertexHandlerlInvokerTable[3])
shaderBonLighting(Context);
if(vertexHandlerlInvokerTable[4])
shaderConLighting(Context);
if(vertexHandlerlInvokerTable[5])
shaderAonFinish(Context);

}

The evaluation exploits static branching. In contrast to
dynamic branching, this method is available in all pro-

56

grammable hardware stages and ensures execution coher-
ence between the parallel shader units.

7 Conclusions and Future Work

We have demonstrated the concept and implementation of an
extensible, dynamic approach to combine high-level shader
programs. A developer can extend the functionality of shader
programs by assigning meta information to the source code.
Our implementation is based on GLSL and is integrated
into the high-level graphics middleware VRS (http://www.
vrs3d.org). The adaptation of this approach for other high-
level shading languages and the analysis of performance re-
main future work.

References

[AV02] ALEX VLACHOS A. T. I.: Designing a game’s
shader library for current and next generation hardware.
In GDC Game Developers Conference (2002).

[Ben02] BENDEL S.: First thoughts on designing a shader-
driven game engine. In Direct3D ShaderX: Vertex and
Pixel Shader Tips and Tricks, Engel W., (Ed.). Wordware,
Plano, Texas, 2002.

[BFH*04] Buck I., FOLEY T., HORN D., SUGERMAN
J., FATAHALIAN K., HOUSTON M., HANRAHAN P.:
Brook for GPUs: Stream computing on graphics hard-
ware, 2004. submitted to ACM Transactions on Graphics,
2004.

[FW04] FOLKEGARD N., WESSLEN D.: Dynamic code
generation for realtime shaders. In Linkoping Electronic
Conference Proceedings (2004).

[Har05] HARGREAVES S.: Generating shaders from hlsl
fragments. In ShaderX3: Advanced rendering with Di-
rectX and OpenG, Engel W. E,, (Ed.). Thomson Learning,
2005.

[KesO6] KESSENICH J.: The OpenGL Shading Language
Language Version: 1.20 Document Revision: 8, Septem-
ber 2006.

[Mar06] MARK J. KILGARD: NVIDIA OpenGL Extension
Specifications. Tech. rep., NVIDIA, November 2006.

[McGO05] MCGUIRE M.: The SuperShader. Shader X4:
Advanced Rendering Techniques. 2005, ch. 8.1, pp. 485—
498.

[MDTP*04] MccooL M., DU ToIT S., PopA T., CHAN
B., MOULE K.: Shader Algebra. In SIGGRAPH ’'04:
ACM SIGGRAPH 2004 Papers (New York, NY, USA,
2004), ACM Press, pp. 787-795.

[MSPKO6] MCGUIRE M., STATHIS G., PFISTER H.,
KRISHNAMURTHI S.: Abstract shade trees (preprint).
In Symposium on Interactive 3D Graphics and Games
(March 2006).

[OKS03] OLANO M., KUEHNE B., SIMMONS M.: Auto-
matic shader level of detail. In HWWS ’03: Proceedings
of the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware (Aire-la-Ville, Switzerland, Switzer-
land, 2003), Eurographics Association, pp. 7-14.

(© The Eurographics Association 2007.





