
EUROGRAPHICS 2007 / P. Cignoni and J. Sochor Short Papers

High Speed Skin Color Detection and Localization on a GPU

M. Seshadrinathan and K. Dempski

Accenture Technology Labs, Chicago, IL, USA

Abstract

In this paper, we present a simple yet novel method for high speed skin color detection and localization on images
and video using the Graphics Processing Unit (GPU) and common graphics programming techniques. Our ap-
proach is innovative in that it provides a system for skin recognition and localization on the GPU at a speed much
higher than that on the CPU. We also test in detail, the performance of different classes of cards and data buses.

Categories and Subject Descriptors (according to ACM CCS): I.3.8 [Computer Graphics]: Applications

1. Introduction

It is often desirable to perform skin detection in real-time
in order to analyze a video stream at 30 frames per second
(fps). There have been approaches towards creating special-
ized hardware to solve the problem of Real-time skin de-
tection. In [KLACS01] a single chip digital camera with a
massively parallel processor is used to achieve a speed of 30
fps. Currently, no approaches take advantage of the capabili-
ties of the GPU. Parallelism and data independence make the
GPU a much faster alternative to the CPU. GPUs have been
used in many areas, such as fluid dynamics, particle sys-
tems and Computer Vision. Mapping general-purpose com-
putation onto the GPU is not easy as there are constraints
to programming the GPU that makes generalization diffi-
cult [Har05]. Our system takes advantage of the parallelism
of the GPU and achieves higher than real time speeds on the
card. Compared to 3 - 13 fps [ZG05] at the CPU (30 being
real-time), we achieve speeds averaging 830 fps - at least 30
times faster than the CPU.

2. Skin detection

Many different approaches to the problem of skin detection
such as learning networks, normalized lookup tables and
parametric modeling have been explored [VSA03]. We fol-
low the approach taken by [JR99] to build statistical color
models for skin color detection since this approach lends fa-
vorably to implementation on the GPU. To build the model,
we use a set of 1000000 skin color samples in the RGB color

Figure 1: Plot of Y-Cb-Cr values of skin samples from vari-
ous races

space. The Y-Cb-Cr (luminance - chromaticity) color space
is commonly used in image processing. Human skin col-
ors, though differing from person to person, are clustered
together in a very small area on the Cb-Cr plane as shown in
Figure 1 (different colors correspond to different races). We
convert the RGB color space to the Y-Cb-Cr color space us-
ing a simple set of equations. Further, in the Y-Cb-Cr color
space the luminance (Y) is decoupled from color informa-
tion.

c© The Eurographics Association 2007.

37

http://www.eg.org
http://diglib.eg.org


M. Seshadrinathan & K. Dempski / High Speed Skin Color Detection and Localization on a GPU

Figure 2: Process of skin detection - From top - Initial
Frame, First pass (128 x 128), second (64 x 64) and fifth
(16 x 16)

As seen from the plot, most of the spread is in the lumi-
nance. Hence, we use just the Cb-Cr color space for skin
detection. We build a histogram with 240 bins per channel
in the Cb-Cr color space. We convert these histogram counts
into a probability distribution by dividing the count in each
bin by the total number of samples. Equation 1 describes our
statistical model for skin color in the Cb-Cr color space.

P(Cb,Cr) = C(Cb,Cr)/T c (1)

where, Cb,Cr are the chromaticity values, P(Cb,Cr) is the
probability of that chromaticity value being skin, C(Cb,Cr)
is the count of pixels that were indexed in that bin and T c is
the total number of samples.

3. Skin Detection on the GPU

We take advantage of several features of the GPU and graph-
ics programming. We convert the probability model into a
texture of size 240 x 240 pixels. The value of each pixel in
the texture corresponds to the probability of that particular
coordinate being skin color. We upload the probability tex-
ture onto the GPU as a input lookup texture. Each frame of
data, on which it is desired to perform skin detection, is also
uploaded onto the GPU texture memory. We then write a
shader to convert the RGB value of each pixel in the input
image to Cb-Cr values using a set of arithmetic instructions.
After conversion, we use the (Cb,Cr) values as pixel coor-

dinates to look up the value in the probability texture. We
then assign the probability value to the alpha channel of the
output pixel. The output contains all the regions detected as
human skin in the incoming frame of data.

We use alpha testing to determine which pixels are ren-
dered. Alpha tests allow us to set a comparison function that
determines if a pixel is drawn or discarded. The GPU com-
pares the alpha value of each pixel to a reference value. If
the pixel does not pass the test, it is discarded. In our ap-
proach, we set the alpha test reference value to some thresh-
old. Hence, using the alpha test, we discard all those pix-
els whose probability of being skin is less than a reference
value.

Hardware occlusion queries make it possible for an appli-
cation to query the hardware as to whether any pixels would
be drawn if an object was rendered. [WB05] We use the oc-
clusion queries to determine the number of skin pixels in the
region drawn. The command to start the occlusion query is
issued before the block of data is rendered. Using the alpha
test we draw just those pixels whose alpha values are greater
than a given reference. After the rendering is done, the com-
mand to end the occlusion query is issued. The results of the
occlusion query come back with the total number of pixels
drawn in that call. This corresponds to the number of skin
pixels in that particular block of image data. Figure 2 the
detection and the bounding boxes at different levels of local-
ization. Figure 3 shows the flowchart of our method.

4. The Block Tree approach

If we were to process the entire image, we would be able
to detect skin regions globally. However, we still would not
be able to localize the skin regions. To solve this problem we
use the block tree approach. We start by stepping through the
image in blocks of size 128 x 128 pixels. The vertex shaders
make it easier to render blocks of the input image. This in-
creases the efficiency since the GPU is concerned with ren-
dering just the sub segment that is being processed and not
the whole image.

We used a starting block size of 128 x 128 pixels since it
gave us almost the same performance when compared with
a pure quad tree approach. The occlusion queries give us the
number of skin pixels in that block. Each block that returns
containing skin, is further divided into four blocks, each of
which is further processed for skin.

To render a block of image pixels, the CPU issues a Draw-
Primitve call. However, more DrawPrimitive calls translate
to slower speed. It is faster to render a block of 100 x 100
pixels with a single DrawPrimitive call than issuing 100 calls
to draw 10 x 10 pixel blocks. We stop at blocks of 8 x 8 pixels
for localization. To increase the efficiency of our algorithm,
if a block returns with no skin pixels, we do no further pro-
cessing of the block. If a block returns with fully populated

c© The Eurographics Association 2007.

38



M. Seshadrinathan & K. Dempski / High Speed Skin Color Detection and Localization on a GPU

Figure 3: The flowchart of our approach

Figure 4: Performance of different cards - Average speed for
80 frames

skin regions, then we index all sub blocks as skin and do no
further processing.

The image generated by the GPU is written onto a Ren-
der Target. The render target resides on the GPU memory.
Getting the data from the card to CPU is comparatively ex-
pensive. Since we process down to 8 x 8 blocks in the image,
this gives us sufficiently fine bounding box data and we can
operate at higher speeds by not getting the actual data from
the card onto the CPU.

5. Experimental Results

We performed experiments on several videos and image
frames to test the efficiency of our algorithm. Our experi-
ments show that we detect and localize skin color on the
GPU at an average speed of 830 fps using our block tree ap-
proach. To discuss the results, we used a sample set of 80
frames of a video of resolution 640 x 480 pixels. Since, the
process of skin detection is very fast on a GPU we process
each frame a hundred times in order to better time our algo-
rithm. In order to compare our results with the CPU, we im-
plemented an identical skin detection algorithm on the CPU.

Figure 5: Performance of different cards - Getting RT data
back from CPU

The CPU implementation of the algorithm gave us a speed
of 22 frames per second.

Pulling the data off the card onto the CPU takes time and
hence, the speed of detection when getting the render target
data is found to be significantly lower than while not get-
ting the data. The speed of getting the data from the card to
the CPU also depends on the bus. It is seen from Figure 4
that the PCI - Express bus contributes to higher speeds of
detection when getting the render target data. The graph in
Figure 5 compares the detection speeds on the CPU and dif-
ferent GPUs when we get the render target data back on the
CPU.

However, we use the block tree approach and go down to
8 x 8 blocks (0.02 percent of the image) in our experiments.
Since we have such fine localization it is not necessary to
get the render target data from the card onto the CPU. The
graph in Figure 6 shows the detection speed when we do not

c© The Eurographics Association 2007.

39



M. Seshadrinathan & K. Dempski / High Speed Skin Color Detection and Localization on a GPU

Figure 6: Performance of different cards - Not getting the
RT data

Figure 7: Timing for different cards

get the render target data. We see that there is a significant
increase in speed.

Issuing more DrawPrimitive calls causes a reduction in
speed but an increase in localization accuracy. Figure 8
shows the speed at various levels of localization (for the
GeForce 7800 card). We see that the speed at 128 x 128 pixel
blocks is much higher than that for localizing down at 8 x 8
pixel blocks.

From Figure 7, we see that it takes most GPUs from 1 - 5
ms for detecting skin regions as compared to 45 ms on the
CPU. We also see from our experiments that the consumer
end graphics cards, namely the GeForce 7800, perform bet-
ter than the high-end graphics cards. This can be attributed
to the fact that consumer end graphics cards are tuned for
faster pixel fill rate.

We conclude that the GPU can detect and localize skin
regions in an incoming video feed from a camera at speeds

Figure 8: Speed at various levels of localization

much higher than real time. Further, our method can be used
for high speed detection and localization of any color by
building a color model. We plan to integrate our method into
existing face detection techniques to enable real-time face
detection and recognition.

References

[Har05] HARRIS M.: Mapping Computational Concepts
to GPUs, in GPU Gems 2: Programming Techniques for
High-Performance Graphics and General-Purpose Com-
putation. Addison-Wesley, 2005.

[JR99] JONES M. J., REHG J. M.: Statistical color models
with application to skin detection. Computer Vision and
Pattern Recongition (June 1999), 274–280.

[KLACS01] KLEIHORST R., LEE M.-S., ABBO A.,
COHEN-SOLAL E.: Real time skin region detection with
a single-chip digital camera. IEEE International Confer-
ence on Image Processing 3 (Oct. 2001), 306–309.

[VSA03] VEZHNEVETS V., SAZONOV V., ANDREEVA

A.: A survey on pixel-based skin color detection tech-
niques. In Proc. Graphicon-2003 (2003), pp. 85–92.

[WB05] WIMMER M., BITTNER J.: Hardware Occlusion
Queries Made Useful, in GPU Gems 2: Programming
Techniques for High-Performance Graphics and General-
Purpose Computation. Addison-Wesley, 2005.

[ZG05] ZHENG Q.-F., GAO W.: Fast adaptive skin detec-
tion in jpeg images. Lecture Notes in Computer Science
3768 (Oct. 2005), 595–605.

c© The Eurographics Association 2007.

40




