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Abstract

In this communication, we present an improvement of an existing thinning algorithm that computes a surface
skeleton from a binary volume. The method makes an intensive use of Boolean operations and works on a special
encoding of the volume (the EVM encoding) in which Boolean operations are very efficient. The contribution of
this work consists on a more suitable application of Boolean operations in the thinning algorithm. Computation

time has been reduced more than a half.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer graphics]: Computational Geometry
and Object Modeling; 1.4.10 [Image processing and computer vision]: Image representations

1. Introduction

In the field of Bio-CAD technology structural parameters
have to be computed for the morphology of porous bone
and bio-material samples. Such parameters are classifica-
tions into rod (low density) and plate (high density) elements
and porosity models, including pore size and interconnec-
tivity. Obtaining the surface skeleton from a binary volume
is a preprocess needed in these computations. The skeleton
can be defined as the locus of centers of maximal inscribed
balls [Lie03].

In this paper we present an improvement of an existing
algorithm that allows to compute a surface skeleton from a
binary volume and makes an intensive use of Boolean op-
erations. The volume is encoded in a way, EVM encoding,
which allows efficient Boolean operations. The contribution
of this work is an improvement in the application of these
Boolean operations.

2. Related work

Skeletonisation methods can extract a surface skeleton as
well as a curve skeleton. Methods can also be classi-
fied in four families: thinning, geometric and methods
based on distance transform and on generalized potential
fields [CSMO05]. We use a thinning method that computes a
surface skeleton [CT97], [RTARO03]. Thinning methods pro-
duce skeletons by iteratively deleting voxels from the bound-
ary of the volume. In [MBPLO02] a thinning method is pre-
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sented to obtain a surface skeleton that is used in [SM06] to
classify bone samples into rods and plates. Another thinning
method, [BNB99] computes the medial surface and, from it,
the curve skeleton. In [BB04] a curve skeleton is computed
by a thinning method in order to segment a triangular mesh.
It uses a run-length encoding to obtain the skeleton.

An object and its skeleton are topologically equivalent
if they have the same number of connected components,
tunnels and cavities [KR89]. Topology preservation can be
guaranteed by thinning methods by only allowing deletion
of simple points. A simple point is defined in terms of
its neighborhood [KR89]. Topology preservation can also
be achieved by detecting the two patterns showing non-
manifold vertices or non-manifold edges of a volume (see
Figure 2) [BNB99], [MBPLO02], [RTARO3].

3. Background
3.1. The thinning algorithm

The thinning algorithm used in this work [CT97], [RTARO03]
satisfies the following properties in this order: homotopy,
thinness and reconstructability [RTARO3]. It applies unitary
directional erosions to the region in order to compute the
corresponding residuals and to detect those voxels whose
deletion might not preserve the topology with the two non-
manifold patterns (gaps) already mentioned. Residuals and
gaps are retained in the volume since they are part of the
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skeleton and this process is repeated until no more progress
is made.

Let V/ be a volume. The computation of residuals is based
on the expression ¥ LB = V'\(VoB). B is the structuring el-
ement, a centered 3x3x3 cubic element which can be bro-
ken into a chain of 6 two-voxel elements that will allow to
perform directional erosions and o is the opening operation,
VoB = ((V©B)®B).

For each directional erosion, gaps are computed with a
Boolean expression. For instance, for direction y+:

(P\P) N (7 \Vs) U (M\F2) U (F12\V10) U (Fo\ )
U(1\a) U (V3\Vis) U (Va0 \Vie) U (V2 \V17) - (1)

i <
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Figure 1: Numbering corresponding to the possible 26
translations applied.

V; stands for the volume /' translated in the 7 direction (see
Figure 1). Here, we outline the used algorithm:

algorithm Thinning
input: V; /* binary volume*/
output: S; /* skeleton of V'*/
S—0;L—0;
do
/* erosion along y+ */
I < 0; /* increment of skeleton */
E — VNVy; /* eroded volume */
R — V\ (EUEy); /* residual */
G — (M) N[ \FVe) U (M\P2) U...U (V2 \W7)); /* gap */
[ «+— ITURU G; /* increment of skeleton */
V < EUI; /* updated volume */
/* repeat for directions z+, x+, y-, z-, and x- */

V — V\L; /*removal of previous skeleton increment */
S« SUL; /* updated skeleton */
L «— I\L; /* last skeleton increment */

until (V = 0);
S «— SUL;/* last updated skeleton */
end.

For more details, see [CT97], [RTARO3]. This algorithm
was first performed in a voxel-based representation [CT97]
and then using the EVM encoding [RTARO03].

3.2. Extreme Vertices Encoding

The boundary of any volume can be represented by an or-
thogonal pseudo-polyhedron (OPP), i.e., a polyhedron with
all its faces oriented according to the three orthogonal co-
ordinate axes and with a non-manifold boundary (see Fig-
ure 2). Let P be an OPP, a brink is a maximal uninterrupted
segment built out of a sequence of collinear edges of P. The
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Figure 2: Example of an OPP. B is a non-manifold vertex
and CC’ is a non-manifold edge. A brink from vertex A to
vertex E is shown (vertices A and E are extreme and ver-
tices B, C and D are non-extreme). Cuts and sections per-
pendicular to the X axis are shown in light and dark color,
respectively.

ending vertices of a brink are called extreme vertices. P can
be encoded by its extreme vertices which are a subset of its
vertices (EVM encoding). A cut of P is the set of extreme
vertices of P lying on a plane perpendicular to a main axis
of P, say X. A slice is the region between two consecutive
planes of vertices and a section is the polygon resulting from
the intersection between a slice and a plane perpendicular to
X. Cuts and sections are pseudo-polygons and their 1D cuts
and sections can be computed analogously. Sections can be
computed from cuts and vice versa:

Sj(P):S;,](P)(@Cl‘(P); CKP)ZS,’,](P)@S,‘(P) 2)
fori=1...n, where ® denotes the XOR Boolean operation.

EVM encoding is efficient for operations performed on
volumes [RAA04]. For more details, see [Agu98].

4. Improved Boolean operations
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Figure 3: Above: 2D example of the Boolean operations al-
gorithm between two different object. Below: 2D example of
the Boolean operations algorithm between an object and a
translation of itself. NOTE: vertical dashed lines represent
the sections of the objects

Given two volumes EVM encoded using the same se-
quence of coordinate axes, say XYZ, any Boolean operation
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(B.O.) between them can be reduced by applying the same
operation to the sections perpendicular to the X axis of both
operands, which are 2D objects. In turn, this boils down to
apply the same operation to the 1D sections perpendicular
to the Y axis of both 2D operands. Then, with the EVM en-
coding, 3D B.O. are reduced to 1D B.O. and consist of a
merging process involving sections. Computing sections is
the bottleneck of this process, but this computation only in-
volves XOR operations which hold the following property.
Let EVM(V) and EVM(W) be the two encoded volumes,
then [AguI8L:EVM(V @ W) = EVM(V) @ EVM(W). Fig-
ure 3, above, illustrates the B.O. algorithm with a simple 2D
example, in which sections of 4 and B are computed and
used to compute sections of C = A4 N B.

The used thinning algorithm involves the computation of
B.O. between the input volume, V, and translates of itself,
Vi, d=0,...,25. The direct implementation of these opera-
tions in the thinning algorithm and particularly in equation 1
would require computing the EVM encoding of all the trans-
lated operands (i.e., their cuts and sections) and store or re-
compute sections of the partial results. These memory and
computational requirements can be reduced by taking into
account the following two properties:

1. Performing B.O. between two volumes rely on their sec-
tions and the sections of a translated volume are the same
as those of the input volume, conveniently translated, that
is, Si(Vg) = (Si(V))a, for any i.

2. Computing V<V, where < stands for an arbitrary B.O.,
involves operating any section of /' with the same, the
previous or the next section of V;, because all translations
are unitary, according to the following rules:

o Si(VOVy) = Si(V)0Si(Va).d € {0,1,2,3,4,5,6,7}
o Si(VOVa) =Si(V)OSi1(Va),
de{8,9,13,16,17,19,20,22,25}
o Si(VOVa) =Si(V)OSi—1(Va),
de {107 11,12,14,15, 18,2],23,24}

These properties mean that computing B.O. between a
volume V' and a translate of itself //; does not imply to first
translate " and then compute sections of /" and V. Instead,
only sections of /" have to be computed and then translated.
Moreover, computing sections of a resulting volume only
involves two consecutive sections of the input volume and,
therefore, they can be computed sequentially without relying
on additional data structures. Figure 3, below, shows a 2D
example involving an object 4 and a translate, 4,. Sections
of 4, are the same as sections of A4 conveniently translated
and to compute C = 4 N Ay, only one or two consecutive
sections of 4 are involved.

These properties are applied in the computation of the
eroded volume, ¥ NV}, and in the computation of the second
part (union) of the residual, £ U E4. For directions y+, y-, z+
and z- (d=0, 4, 6, 2, respectively) these properties can be re-
cursively applied to the 2D sections (as in these cases we al-
ways operate a 2D section and a translated version of itself).
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But for directions x+ and x- (d = 8, 10, respectively) it is
not possible, in general, as in several cases we are operating
different sections (S;(7) with S;_1(7)). We could solve this
problem by reordering the extreme vertices but this would
be more expensive than to perform the general B.O.

The application of these properties is even more efficient
in the computation of gaps (equation 1). We apply them
to compute G = V'\Fp and to compute D = V\V, as ex-
plained before. D is computed because the remaining differ-
ences of equation 1 are unitary translates of D. For instance,
V7\Vs = (Vo\V )6 = Dg. So, equation 1 can be rewritten as:
GNU,U =DgUDy, UDjgUDgUD4 UDi5UDjgUDyq.
Furthermore, we can compute all the unions of U simultane-
ously and at the same time as the computation of D as well as
we can compute V' NVy, G =V \Vy and D = Vy\V also at the
same time, as they involve the same object and translation.

Another way to compute equation 1 would be in the union
of intersections form (UOI), i.e., (GNDg) U(GNDy)U(GN
D1p)U(GNDg)U(GND14)U(GNDy5)U(GNDy)U(GN
Dj7) and then getting smaller (eventually null) operands.
But this way would involve an intensive computation of sec-
tions.

Now we are going to analyze the time complexity of this
improvement with the direct application of equation 1, tak-
ing as basic operations the translation and the computation
of sections of a volume. They are basic operations because
they are performed on the same initial volume. The direct ap-
plication of equation 1 involves 17 translations and 17 B.O.,
each involving computing sections of 2 operands: 34 section
computations. On the other hand, the improved version in-
volves only 1 section computation for the initial volume V',
and 9 translations, one for }; and 8 to compute U. What fol-
lows is the justification of why we only need to compute
the sections of one volume. Each computed section of V'
is translated to obtain the corresponding section of ;) and
from them the corresponding sections of volumes 7\ and
D = V,\V can be computed; then the actual computed sec-
tion of D is translated 8 times and the resulting sections are
operated; finally the resulting section is operated with the
corresponding section of 7\ 7. This explanation applies di-
rectly for cases d € {0,1,2,3,4,5,6,7}. For the other cases
more than one consecutive section is involved, but this fact
only affects memory requirements. So, from this analysis,
we can conclude that the new version is a real improvement.

5. Experimental results

The presented algorithm has been implemented in C on
a PC Core2, 2.4 GHz with 3 Gbytes of RAM. Table 1
shows the running times in seconds for several datasets
before and after the improvement presented in this work.
Figure 4 shows two datasets with their skeleton. The
EVM of all the models in Table 1 can be found in
http://truja.lsi.upc.edu/movibio/ResearchLines/ VEVM/.
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Figure 4: Datasets monster (above) engine (middle) and
aneurysm (below) on the left, with their corresponding skele-
tons on the right

Model Size Size Time Time

Voxel EVM  before after
monster 87 x 39 x 62 4288 26.5 13.8
skull 256 23464 89 495
aneurysm 2563 70260 450 165
lobster 301 x 324 x56 102394 591 269

engine 2567 x 128 106390 932 516

Table 1: Results for several known datasets. Values shown
are model size (SizeVoxel), number of extreme vertices
(SizeEVM) and running times in seconds (Time).

From the results, we can see that the computation time has
been reduced by approximately a half.

6. Conclusions and future work

We have presented an improvement of a thinning algorithm
by using a suitable encoding of the volume that allows to
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perform efficient Boolean operations. The improvement con-
sists in the application of suitable Boolean operations, based
on the fact that these operations are performed between vol-
umes and translates of themselves.

As a future work, we plan to apply the obtained skeleton
to characterize bones and scaffolds into rods and plates and
to model the porosity.
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