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Abstract

Perlin noise is generated by interpolation of a pre-defined random number table. However since the random num-

ber table is generated without considering the ideal properties of noise for computer graphics, the resulting noise

function does not have these properties. We improve the properties of noise for Perlin’s and similar algorithms,

by stabilizing the random number table itself. We create the noise function using well-known statistical tools that

measure the degree of stability of a random number table. These tools are used within an optimization procedure to

create a random number table with a uniform random distribution, without periodicity, and having a band-limited

property.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:

Color, shading, shadowing, and texture

1. Introduction

Perlin’s noise function [Per84, Per85], is now a well-

established tool for creating procedural texture and shad-

ing. Although Perlin noise is defined as a continuous series

of values which can be generated from random numbers,

it is different from white noise, which consists of uncon-

strained random numbers. Computer graphics applications

require noise with ideal properties: meaning that it is repro-

ducible, bounded, band-limited, non-periodic, stationary and

isotropic periodicities [EMP∗02].
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Figure 1: Overview of our approach to generating stable

noise.
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Perlin’s original noise function [Per85] does not exhibit

these ideal properties fully. There has been research on im-

proving the quality of noise function, for instance by elim-

inating bias [Per02] and by making the noise fully band-

limited property [CD05]. However, each of these improve-

ments only considers an individual property. Furthermore,

because of its simplicity of implementation, the original Per-

lin noise function still in general use, and has even imple-

mented in hardware [Har01].

In this paper, we propose a novel way to generate a sta-

ble random number table which can be used to produce an

stabilized noise function. This leads to a noise function with

ideal properties, which can nevertheless be generated using

Perlin’s original straightforward mechanism. Conventional

methods of random number generation are based on simple

arithmetic. But these methods take no account of the prop-

erties of an ideal noise function, making it the weak point in

Perlin’s procedure. But we deliberately generate a random

number table with the required properties. Various statisti-

cal tools are commonly used to test the properties of random

number [LK91]. From these, we select three tests. The chi-

squared and auto-correlation tests, measure the uniformity

of a random distribution and the periodic degree of a table of

random numbers, while procedural band-pass pyramid mea-

sures its band-limited degree. Based on these three tools, we

can design an optimization problem, the solution of which

stabilizes a random number table so that it can be used to
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create an ideal noise function. A stabilized table is reusable

and can also be employed with other noise generation tech-

nique.

Figure 1 is an overview of our noise generation method.

The noise function that we use is a simple B-spline interpo-

lation, but our random number table can be generated by any

other noise mechanism which is based on predefined random

numbers.

2. Related Work

After Perlin [Per84, Per85] introduced the noise function, it

was used to generate procedural textures [EMP∗02,Lew89],

various natural phenomena such as water, fire, clouds, wood-

grain etc. [PN01], and to make animated motions more nat-

ural [Per95]. Additionally, a noise function can provide a

way of reducing the high cost of simulation-based meth-

ods [EMP∗02]. Another approach to natural pattern gener-

ation was introduced by Lewis [Lew89]. His method, which

is based on the Wiener interpolation, can generate noise with

an arbitrary energy spectrum, but it is more complex than

Perlin’s method. Recently, Perlin noise has even been im-

plemented in hardware for real-time graphics [Har01]. Ebert

et al. [EMP∗02] have dealt with various aspects of noise and

provide details of many different types of implementation of

the noise function.

Perlin’s original noise function has been improved to

overcome two kinds of problem. Perlin himself [Per02] in-

troduced a new algorithm that solved two problems with his

noise function. He suggested a new interpolation method

that gives C2 continuity everywhere in the domain, and a

new gradient table, containing only 16 vectors, which speeds

up computation and prevents directional bias. Cook et al.

[CD05] introduced Wavelet noise, which perfectly band-

limited because unnecessary low frequencies are eliminated.

Our method of generating an stable random number table in-

herits these improvements. We inherit these improvements,

in generating an ideal random number table which can be

used with any noise function.

3. Random Number Stabilization

We generate a table of random numbers using an objective

function which measures the ideal properties of the noise

function numerically. This objective function is divided into

three terms: a chi-squared test term (CS(x)), an autocorrela-
tion term (AC(x)), and a band-limited term (BL(x)).

3.1. Chi-squared Test Term

The chi-squared test [Knu98] is used to compare observed

data with a specific distribution. Let X be a set of observed

data. We divide the domain of X into K buckets of uniform

size, so that the number of data items in the jth bucket is m j .

B k (x ) B̂ k (x )

0

1

bj bj+1 bj+1bj

(a) (b)

Figure 2: (a) Bk(h) is the boxcar function, and (b) B̂k(h) is
an approximation to the boxcar function.

If Z j is the expected number of data items in the jth bucket,

then the chi-squared value D2 can be computed as follows:

D
2 =

K

∑
j=1

(

m j−Z j

)2

Z j
. (1)

If the distribution of the observed data X is similar to its

expected distribution Z j, then the value of D2 will tend to

zero.

If a sequence of random numbers has a stable distribution,

the data are equally spread over the whole domain [LK91].

So, if we use the uniform distribution as the expected distri-

bution in the chi-squared test, a small value of D2 represents

a stable random distribution. Using the boxcar function to

count the number of data items in each bucket [YLC04], we

can express the uniformity of the random distribution as a

chi-squared value.

Let N be the number of data items and let N/K be the uni-

form expected value for all buckets. Then we can calculate

CS(X) as follows:

CS(X) =
K

∑
j=1

(

N

∑
i=1

B j(xi)−
K

N

)2

, (2)

B j(x) =

{

1, if b j ≤ x≤ b j+1,
0, otherwise,

(3)

where xi denotes each random number in table X , and B j(x)
is a boxcar function that measures whether data value x is

located between b j and b j+1, which is the range covered

by the kth bucket (see Figure 2(a)). Therefore ∑
N
i=1B j(xi) is

the number of data items in the jth bucket. To determine the

number of buckets, K, we follow the rule of thumb [Rey84]

that there should be at least five data items in any bucket.

In Equation (2), a low value of CS(X) means that the dis-
tribution of X is similar to the uniform random distribution.

However because the boxcar function is an integer block that

is appropriate for an interger problem, we approximated it

by the piecewise function shown in Figure 2(b), which is a

simple quadratic curve.

3.2. Autocorrelation Test Term

Autocorrelation is a widely used mathematical tool to ana-

lyze the periodic offset of signals [PM96] in one or many di-

mensions. Generally, autocorrelation is the cross-correlation
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of a signal with a lagging version of itself. Let~k be the offset
vector of the lagged signal. A higher autocorrelation value is

likely to indicate a periodicity in the signal with the period
~k. Assuming that xi is a data sequence of length N, we can

calculate an autocorrelation value autoc(~k) for an offset~k as
follows:

autoc(~k) =
∑
N
i=1(xi−µ)(x

i+~k
−µ)

∑
N
i=1(xi−µ)2

, (4)

where µ is the mean value of xi and autoc(~k) has the

range [−1,1]. Because the ideal noise function should be

non-periodic, a stable random number table, from which

the noise function will be generated, should also be non-

periodic. Therefore, a stable random number table must have

a low autocorrelation for any offset ~k. We have designed

AC(X) to be a periodic measure of a random number table: it

is the sum of the absolute autocorrelation value at all offset

vectors. AC(X) is formulated as follows:

AC(X) = ∑
~k∈Θ

||autoc(~k)||, (5)

where Θ is whole domain of X .

3.3. Band-limited Test Term

The Perlin noise function constructs a pattern within an as-

signed band, and this means that the noise used must have

a limited range of frequencies. To generate a natural pat-

tern which contains a range of frequencies, a noise function

can be constructed by summing a multi-band noise such as

fractal Browning motion (FBM) or turbulence [EMP∗02].

To generate a stable multi-band noise function requires a

noise function that is completely band-limited. However, the

original version of Perlin noise contains unnecessary low

frequencies [CD05], which can cause an aliasing problem

in details of the resulting pattern. The low frequencies can

also impair amplitude control of multi-band noise. Although

Perlin improved his noise function [Per02] by using a fixed

surface normal to improve the band-limited property, this

turns out to produce only a weak form of band-limitation.

To fix the problem of band-limitation, Cook et al. [CD05]

introduced Wavelet noise, which eliminates the low frequen-

cies using a procedural band-pass pyramid. We use the same

procedural band-pass pyramid to measure band-limitation in

random number table.

To measure the unnecessary low frequencies in a given

random number table X (see Figure 3(a)), we apply down-

sampling to the upper-level pyramid. Let X↓ be the result of

down-sampling. The term X↓, which is half the size of X ,

contains the low frequencies. Then we perform up-sampling

to expand the pyramid again. Finally we obtain X↓↑ (Fig-

ure 3(b)). Cook et al. [CD05] generate Wavelet noise from

(X −X↓↑) (Figure 3(c)). Since we have to design an objec-
tive function which measures the band-limited term, we need

CS(X) AC(X) BL(X)

Before 102.5153 12.2456 5.7672

After 23.0342 3.7643 0

(a) Seperate optimization

CS(X) AC(X) BL(X)

Before 102.5153 12.2456 5.7672

After 25.0466 4.6672 0

(b) Composite optimization

Table 1: Optimization convergence: (a) changed values re-

sulting from optimizing three terms separately; (b) changed

values resulting from optimizing three terms with a weighted

summation. - average values for 100 random number table

generations

(a) (b) (c)

Figure 3: Elimination of low frequencies using the procedu-

ral band-pass pyramid: (a) PRN table; (b) X↓↑ is a down-up

sampling of (a); (c) a new random number table desired from

(a) without the low frequencies in (b).

to formulate X↓↑ numerically. If X has a perfectly band-

limited form, all values in X↓↑ will be zero. We therefore

measure the band-limited property of a random number ta-

ble as the magnitude of X↓↑. The value of BL(X), which
tests the band-limited property, is formulated as follows:

BL(X) = ||X↓↑||, (6)

where ||.|| represents the sum of the squared values of each

element in the matrix X↓↑.

3.4. Random Table Generation by Optimization

Using the three tools which have been introduced in the fore-

going sections, we can now design an objective function that

corresponds to a stable random number table. A lower value

of each test term, CS(X), AC(X) and BL(X), represents a
more stable condition. Therefore, representing each random

number in X as a unknown variable, we can design the ob-

jective function as follows:

minimize w1 CS(X)+w2 AC(X)+w3 BL(X), (7)

where wi represents the weight of each term. (We used 0.1,

1 and 2 as the weights for normalization of each term of the

function value: see Table 1.) We used the interior-reflective

Newton method [CL94] to solve the optimization problem.
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Dimension Resolution time

1 128 12 sec.

2 128×128 243 sec.

3 128×128×128 183 min.

Table 2: Optimization costs for noise generation. - average

values for 20 random number table generations

4. Result

We experimented with the optimization, observing the rate

of convergence when the three terms were treated separately

and together. Because Equation (7) consists of a weighted

sum of three different terms, If the independence between

each term is not guaranteed, a conflict can occur which inter-

rupts the search for an optimal solution. We found that each

of the three terms is almost independent of the other two

(see Table 1). Figure 4 shows the change in autocorrelation

values and energy in the frequency domain during stabiliza-

tion of a two-dimensional random number table. Before the

optimization, the random number table contained unstable

periodic points (see the red points in Figure 4(a)) and unnec-

essary low frequencies (see Figure 4(c)). The optimization

eliminated these undesirable properties (see Figure 4(b) and

(d)).

Table 2 shows the computation times for these experi-

ments. The computational environment was an Intel Core2

CPU running at 2.13 GHz, with 2 Gb of memory.

5. Conclusion

We have introduced a noise generation method with the ideal

property of the resulting noise function. Using statistical

tools which are traditionally applied to the testing of random

numbers, we generated a stable random number table as a

resource for Perlin’s and other widely used noise functions.

One limitation of our work is the length of the optimiza-

tion time. Because the number of unknown variables in-

volved in constructing a random number table is huge, the

optimization is time-consuming. The optimization time is

very much affected by the statistical tools used to achieve

the ideal properties of the noise function. Other statistical

methods might be more effective, and we will investigate

new ways of generating noise patterns in many aspects.
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