
EUROGRAPHICS 2007 / P. Cignoni and J. Sochor Short Papers

Exemplar-based Worn Edges

C. Brachmann1, B. Walther-Franks1 and J. Loviscach2

1Fachbereich 03: Mathematik/Informatik, Universität Bremen, Bremen, Germany
2Fachbereich Elektrotechnik und Informatik, Hochschule Bremen, Bremen, Germany

Abstract
To counteract the sterile look of computer-generated worlds, we introduce a procedural model for worn edges
that can be seen in buildings and stones: edges that have suffered minor damage at multiple points, resulting
in material being chipped off. Employing data gathered from photographs, the method adds minute detail along
exposed edges. The deformed geometry may be simulated with normal maps to also support real-time applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Geometric algorithms

1. Introduction

In most 3D software the artist can fully control every de-
tail of a model—or rather must fully control every detail,
apart from basic randomization. However, the intricacy of
real-world objects is hard to achieve by hand. Typical ap-
proaches to this problem concern aging and weathering ef-
fects through deep fractures, shallow cracks or changes in
texture. The contribution of this paper is a method that fo-
cuses on the geometry of edges.

With the proposed method, the defects are not modeled
through physical simulation, which typically is slow to com-
pute and hard to steer. Rather, we rely on exemplar silhou-
ettes gained from photographs or drawn freely. The basic
idea of the method is to map the exemplars along “exposed”
edges of the mesh, use them to cut it, and then fill the holes
smoothly. Since such a geometric model often leads to a con-
siderable number of polygons, we propose a further process-
ing step for real-time applications: the chipped mesh is used
to create a normal map for the original mesh.

This paper is structured as follows: Section 2 gives an
overview of related work. Section 3 discusses the extraction
of curves, Section 4 their mapping to the mesh. Section 5 de-
scribes the construction of the chip’s inner surface. Section 6
details the results with normal mapping. The implementation
is covered in Section 7. Section 8 concludes the paper.

2. Related work

Research into the graphical simulation of object aging has
dealt with a variety of physical effects such as corrosion,

Figure 1: The Mayan temple demonstrates worn edges
added with our technique to a clean geometrical model.

dust accumulation, erosion, and crack formation. A compre-
hensive overview can be found in Lu et al. [LGG∗07].

Close to the actual physics, Dorsey et al. [DEJ∗99] em-
ploy voxels and Even and Gobron [EG05] use cellular au-
tomata to simulate erosion. These techniques yield smooth
surfaces at the cost of rendering time or complex geometric
and algorithmic structures. On top of that, they cannot easily
reproduce the hard edges created by chipping.

c© The Eurographics Association 2007.

25

http://www.eg.org
http://diglib.eg.org


C. Brachmann, B. Walther-Franks & J. Loviscach / Worn Edges

Figure 2: A perfect ring shape (top left) is turned into a be-
lievable millstone (bottom left; right: with color texture).

Crack formation methods come close to our objective,
even though they address an object’s faces rather than
its edges. Many such methods are based on cellular au-
tomata [GC01], partially augmented by effects such as
the shrinking of fragments [VPL06] or by more detailed
physics [HTK00]. In a more heuristic fashion, Iben and
O’Brien [IO06] create cracks using only a standard 2D
mesh. Desbenoit et al. [DGA05] employ user-defined curves
to generate the depth profiles of cracks.

Fracture simulations may be close to physics such as the
finite-element approaches of O’Brien and Hodgins [OH99]
or Bao et al. [BHTF07]. Pauli et al. [PKA∗05] present a
physically grounded meshless method to fracture a 3D ob-
ject. Fracture effects may also be created from pre-formed
fragments: Martinet et al. [MGDA04] slice through 3D ob-
jects with fracture masks. Socha and Wan [SW06] mark
plausible fragments of an explosion in a preprocessing step.

Several works address the use of normal maps to change
the look of edges: Cignoni et al. [CST02] emphasize sharp
edges; Bahnassi and Bahnassi [BB07] simulate filleted edges
with normal maps. In a similar vein, Softimage XSI offers a
shader called “Rounded Corners.”

3. Curve extraction

Our method is based on a simplified description of chips that
occur along an edge between two approximately planar sur-
faces: each of the two surfaces contains a line that forms the
corresponding boundary, see Figure 3.

To turn this observation into a modeling method, we col-
lect exemplars of chips, each represented through two planar
polylines that meet at their ends. One could employ a pro-
cedural approach or design such curves manually. Striving
for a realistic look, we traced photographs, see Figure 4. To
undo the perspective distortion, the following process can be

Figure 3: The chips along a chain of edges are described by
two curves contained in nearly planar adjacent surfaces.

employed: the photograph is placed as a backdrop in stan-
dard 3D software; auxiliary planes are matched by eye to
the walls in the photograph; the boundary lines are traced by
hand, using the auxiliary planes as 3D drawing surfaces.

4. Curve mapping

Typically, only those edges of a mesh that are “exposed” to a
certain degree will suffer a damage. In our examples, edges
were treated as exposed if the normals of the adjacent faces
bend away from each other by more than 60◦. The terraces
of Figure 1 are layered, separate blocks to allow defects
along the seemingly concave edges as well, which looks
more plausible for this building. Exposed edges are grouped
into chains, as long as their direction does not change too
abruptly. We used an angle of 60◦ for this threshold, too.
Each of the chains is attacked as a whole. This helps to keep
the results independent of the mesh’s resolution.

For a given number of times, the method chooses the next
chain of exposed edges and the next exemplar of the collec-
tion of curve pairs, starting from the first exemplar if it ar-
rives at the end of the list. The exemplars are applied one af-
ter the other, each time operating on the mesh resulting from
the previous step. Thus, a later cut may carve into an ear-
lier one. However, to reproduce the look of the given exem-
plars, such overlaps have to be prevented. Thus, the exposed

Figure 4: Defect shapes may be collected from photographs.

c© The Eurographics Association 2007.

26



C. Brachmann, B. Walther-Franks & J. Loviscach / Worn Edges

x
y

Start Chain of
Exposed Edges

Figure 5: The x and y of an exemplar’s vertex are traced
across the mesh to find the position the vertex is mapped to.

edges are marked on the initial mesh and tracked during the
split and removal operations. After a given chain of exposed
edges has been attacked, the chipped part is removed from
the list, leaving the remainder of the chain open to further
attacks.

For each exemplar to be applied, the algorithm chooses a
starting point on the selected chain. It identifies the straight
centerline of the exemplar with the chain of exposed edges
through the path length measured from the starting point. No
exemplar is used for a chain that is shorter than the exemplar
itself.

The two polylines forming the exemplar are mapped onto
the mesh, using the centerline for alignment. Every vertex
(x,y) of both polylines is placed as follows: the length x is
traced along the chain of exposed edges from the starting
point; from the point thus found, a path of length y is tra-
versed across the mesh, approximately perpendicular to the
chain. The path’s endpoint forms the mapped position of the
vertex. To improve the continuity along curved chains, the
“y” paths do not start perfectly perpendicular to the chain,
but in linearly interpolated directions, see Figure 5.

Such a path traversed in y direction across the surface may
run through a number of triangles. The vertices found at the
ends of all these paths are connected into a polyline. For the
most part, this polyline already is the mapping of the exem-
plar polyline onto the mesh. The polyline may, however, not
be completely contained in the mesh surface, as it may jump
over or under edges crossing it. To correct this, additional
points along these edges are added to the polyline. On top
of that, this polyline may fold over itself if the chain of ex-
posed edges is strongly curved, the vertices’ distance from
the centerline is large, and/or the density of vertices is large.
As a remedy, overlaps in the polyline are removed.

5. Chip surfaces

To create the chips, the polygons are spliced along the poly-
lines mapped onto the mesh. The polygons enclosed by the
chip outline are removed from the resulting mesh. The hole
thus created is filled with new triangles, leveraging the cor-
responding modeling command of Cinema 4D, the host soft-
ware we’re using. The mesh forming the defects’ surface is

Figure 6: The defects’ surfaces are smoothed and may carry
a special material.

subdivided. Its inner part can be translated along the inverted
vertex normals to push it toward the inside.

The user can choose whether or not the outer edges and/or
the inner edges of the chip should break Phong interpolation.
The standard setting is to break Phong interpolation for the
outer edges but keep it for the inner ones, so that the surface
of the defect appears smooth. With the help of an automat-
ically created polygon selection, the material of this surface
can be set differently from that of the regular surface. This
helps to create the look of a coated surface, the base material
of which is revealed through the damages, see Figure 6.

Figure 7: Actual deformation (top left) can be simulated
through a normal map (top right). The automatic generation
of this map requires an uncommon tessellation (bottom left)
with uv continuity across the edges (bottom right: uv space).

c© The Eurographics Association 2007.

27



C. Brachmann, B. Walther-Franks & J. Loviscach / Worn Edges

Object # of Time # of Triangles
Defects Before After

Millstone 17 0.4 s 256 5,476
Temple w/o stairs 254 32.3 s 1,300 89k
Temple with stairs 917 94.7 s 5,236 251k

Table 1: On a 1.3 GHz Intel Pentium Mobile processor, the
unoptimized algorithm requires about 0.1 s per defect.

6. Simulation through normal maps

To simulate bump-like defects through a normal map has be-
come standard in real-time applications. In our case, the idea
is to create a normal map from the deformed version of the
mesh and then apply this normal map to the much simpler
original mesh. Only an astute observer will notice the differ-
ence from actual geometric distortion if the chips are suffi-
ciently small, see the insets in the upper half of Figure 7.

The normal map is created by “baking” the normal vec-
tors of the deformed mesh into an image file, employing the
uv coordinates of the vertices as positions on the image. To
yield a clean mapping of the defects, the uv texture coordi-
nates have to be continuous across the edges of the original
mesh. This may require an unusual tessellation, see Figure 7.

7. Implementation

The prototype has been implemented as a plug-in for Maxon
Cinema 4D release 10. The user may adjust parameters such
as the number of attacked edges, the polygonal resolution
and the global scale of the exemplars. This scale may vary
randomly by a given amount. The depth of the centerline
of the chips may be shallower or deeper. The chips may be
scattered evenly along the lengths of the chains of exposed
edges or they may occur close to the centers of those chains.

Table 1 contains benchmark data for the objects of Fig-
ure 1 and 2. Cinema 4D handles arbitrary n-sided polygons,
the numbers of which are hard to compare. Thus, the table
specifies the numbers of triangles after triangulation.

8. Conclusion

We have presented a method to add natural geometric details
to the edges of 3D objects. It is steerable through outline
curves that may be designed freely or may be traced from
photographs. With the help of a normal map, the method’s
results can be applied in real-time settings, too. Future work
may address the temporal evolution of damage and may in-
corporate mesh smoothing to simulate micro-scale erosion.
One may evaluate spatially averaged curvature to also find
and attack beveled edges. To chip off corners, one may spec-
ify one curve for each face adjacent to the corner or map a
single closed outline onto all faces meeting at a corner.

References

[BB07] BAHNASSI H., BAHNASSI W.: Micro-beveled
edges. In ShaderX5: Advanced Rendering Techniques,
Engel W., (Ed.). Charles River Media, 2007, pp. 23–30.

[BHTF07] BAO Z., HONG J.-M., TERAN J., FEDKIW R.:
Fracturing rigid materials. IEEE Transactions on Visual-
ization and Computer Graphics 13, 2 (2007), 370–378.

[CST02] CIGNONI P., SCOPIGNO R., TARINI M.: Nor-
mal enhancement for interactive non-photorealistic ren-
dering. In Eurographics 2002 Short Presentations (2002),
pp. 95–103.

[DEJ∗99] DORSEY J., EDELMAN A., JENSEN H. W.,
LEGAKIS J., PEDERSEN H. K.: Modeling and rendering
of weathered stone. In Proc. of SIGGRAPH ’99 (1999),
pp. 225–234.

[DGA05] DESBENOIT B., GALIN E., AKKOUCHE S.:
Modeling cracks and fractures. Visual Computer 21, 8-
10 (2005), 717–726.

[EG05] EVEN P., GOBRON S.: Interactive three-
dimensional reconstruction and weathering simulations
on buildings. In Proc. of CIPA 2005 (2005), pp. 796–801.

[GC01] GOBRON S., CHIBA N.: Crack pattern simulation
based on 3D surface cellular automata. Visual Computer
17, 5 (2001), 287–309.

[HTK00] HIROTA K., TANOUE Y., KANEKO T.: Simula-
tion of three-dimensional cracks. Visual Computer 16, 7
(2000), 371–378.

[IO06] IBEN H. N., O’BRIEN J. F.: Generating surfaces
crack patterns. In Proc. of SCA 2006 (2006), pp. 177–
185.

[LGG∗07] LU J., GEORGHIADES A. S., GLASER A.,
WU H., WEI L.-Y., GUO B., DORSEY J., RUSHMEIER

H.: Context-aware textures. ACM TOG 26, 1 (2007), to
appear.

[MGDA04] MARTINET A., GALIN E., DESBENOIT B.,
AKKOUCHE S.: Procedural modeling of cracks and frac-
tures. In Proc. of SMI (2004), pp. 346–349.

[OH99] O’BRIEN J. F., HODGINS J. K.: Graphical mod-
eling and animation of brittle fracture. In Proc. of SIG-
GRAPH ’99 (1999), pp. 137–146.

[PKA∗05] PAULY M., KEISER R., ADAMS B., DUTRÉ;
P., GROSS M., GUIBAS L. J.: Meshless animation of
fracturing solids. ACM TOG 24, 3 (2005), 957–964.

[SW06] SOCHA J., WAN J. W. L.: Graph-based crack
formation algorithms for rigid body explosions. In Proc.
of CASA ’06 (2006), pp. 159–168.

[VPL06] VALETTE G., PRÉVOST S., LUCAS L.: A gener-
alized cracks simulation on 3D-meshes. In Eurographics
Workshop on Natural Phenomena 2006 (2006), pp. 7–14.

c© The Eurographics Association 2007.

28




