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Abstract

We have found that there is a relationship between the cubic B-spline and four-point curve subdivision method. In
the paper it is used to deduce interpolatory subdivision schemes from cubic B-spline based approximation subdi-
vision schemes directly and construct unified schemes for compositing approximation and interpolatory subdivi-
sion. A new interpolatory \/3 subdivision scheme and a interpolatory and approximation blended /3 subdivision
scheme are created by this straightforward method. The former produces C Ulimit surface and avoids the problem
in the exsiting interpolatory \/3 subdivision mask where the weight coefficients on extraordinary vertices can not
be described by explicit formulation. The latter can be used to solve the "popping effect” problem when switching
between meshes at different levels of resolution, provide the possibility to locally choose an interpolating variant
of the conventionally approximating subdivision scheme, and give more flexibility for feature modeling. These are
realized by only changing the value of a parameter. The method is thoroughly simple without needs of constructing

and solving equations.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Surface modeling

1. Introduction

We have found that there are some relationships between
the cubic B-spline and four-point curve subdivision method.
This fact was first observed by Maillot and Stam [JMO1].
However they were not aware of the property and haven’t
generalized it to extensive application. What’s more, in their
method, the way of computing positions of newly inserted
edge vertices is not base on the theory of generalizing curve
case to surface. It is the essential reason why the method
can’t produce C ! limit interpolating surface.

To force the limit surface to go through a particular set of
control points, modifications of the Catmull-Clark and Doo-
Sabin schemes are needed. Nasri [Nas87] presents such a
modification for the Doo-Sabin algorithm. Halstead et al.
[MHO93] propose an interpolation scheme using Catmull-
Clark surfaces that minimizes a certain fairness measure.
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Both methods require the construction of a linear constraint
on the control points for each interpolation point and thus
the establishment of a system of linear equations. The initial
mesh for the subdivision surface can be obtained by solv-
ing the equations. However, as pointed out in [MH93], it is
possible for the coefficient matrix in the linear system to be
singular, and it is unclear under what conditions the linear
system is soluble.

"Popping effect” problem was also introduce in [JMO1].
The limit surface of the approximating subdivision, espe-
cially in locally convex areas, is smaller than the base mesh.
This is because the refined control meshes progressively
shrink towards the limit surface. Consequently, noticeable
"popping effects” occur when switching between meshes at
different levels of resolution. On the other hand, Interpolat-
ing schemes suffer from the opposite problem. Limit sur-
faces tend to bulge out of the polygonal control mesh, and
successive subdivision steps converge to a surface that is too
big. We are aware that there are only two kinds of meth-
ods have been stated respect to the problem. In one kind of
the work, it is achieved by changing the initial control mesh
[MHO93], not the subdivision rules themselves. It requires
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constructing and solving a linear equations which causes
high computation complexity. In another work [JMO1], it is
realized by adding a push-back step where each original ver-
tex is moved back towards its original position and newly
introduced vertices are also adjusted by linear interpolation
of the adjusted original vertices. As the reason we have ana-
lyzed before, it can’t produces C ! limit surface.

Base on the relationship between the cubic B-spline and
four-point curve subdivision method, in the paper we will di-
rectly deduce a new interpolatory v/3 subdivision mask for
triangular mesh from /3 subdivision mask. The method is
sufficiently straightforward without the additional needs of
computing the mask on extraordinary vertices. The new in-
terpolatory /3 subdivision mask avoids the problem in the
exsiting interpolatory /3 subdivision mask [UL00] where
the weight coefficients on extraordinary vertices can not be
described by explicit formulation.

A unified scheme for compositing approximation and in-
terpolatory /3 subdivision is also constructed. It is proposed
by adding a parameter to control the subdivision surfaces
to approach the control meshes. By changing the value of
the parameter, it can solve the "popping effect” problem and
force the limit surface to go through a particular set of con-
trol points. The method is thoroughly simple without any
complicated computation.

2. /3 Subdivision

In this section we present v/3 subdivision which was intro-
duced in [Kob00] for an approximatory subdivision scheme.
The splitting operator used for our subdivision is the same
with it.

In /3 subdivision scheme in the middle of every triangle
of a mesh a new vertex is computed. This vertex is connected
to the old vertices of the triangle which perform a 1-to-3
split for the triangle. In order to re-balance the valence of
the mesh vertices then flip every original edge that connects
two old vertices as in figure 1.

Figure 1: \/3-splitting of the mesh.

In approximating /3 subdivision presented by Kobbelt
the placement of the newly inserted vertices q is the center
of the triangle A(P;, Pj, Py).

1
q:= 3 (PP +P) m

The stencil for the relaxation of the old vertices is the 1-
ring neighborhood containing the vertex itself and its direct
neighbors. Let q be a old vertex of the mesh, then H(q) is the
set containing all the vertices sharing an edge with q.
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3. A relationship between cubic B-spline curve and
four-point curve

As is usually the case in subdivision researchs, first discover
things in a curve setting and then generalize them to sur-
faces. Given the original control vertices P*(i = 0,1,2...n),
insert new vertex P! in the middle of vertices Pio and PiOJrl .In
each step of cubic B-spline curve subdivision, the newly in-
serted points Pl-1 remain stable and the old points Pio move to
new palcements Pl-z. In each step of four point curve subdivi-
sion, the old points PIQ remain stable and the newly inserted
points P! move to new palcements Pf Let A(P) = P? — P,-O.
It is concluded:

PP =P %(A(P,‘) +A(Pit1)) &)

Equation (3) means that each step of four point curve sub-
division can be gained from the corresponding step of cubic
B-spline curve subdivision. The figure 2 shows this relation.

1
Cubic Bspline E(/—\ *AM) Four-point curve
Figure 2: Relevancy between the cubic B-spline and four-
point curves subdivision.

Now add a parameter o to control the subdivision sur-
faces to approach the control meshes. In order to force the
limit surface to go through a particular set of control points,
permit the parameter o of different vertex to be unequal.
Thus, we get the following non-uniform subdivision scheme.
Given the original control vertices PiO and its weights OL?, the
non-uniform unified scheme defines points at level j+ 1 of
the recursion by:
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Figure 3: Curve samples with different value of parameter.

i+2

When OL? = o where o is a constant, it is a uniform sta-
tionary subdivision scheme produce ¢! limit curve. When
a € [0, 1], it is a non-uniform subdivision scheme produce
C! limit curve. The proof is shown in the appendix.

4. New Interpolatory /3 Subdivision

In this section we want to develop rules for interpolatory v/3
subdivision scheme from the corresponding v/3 subdivision
scheme. Hence, the positions of old vertices remain stable.
Only one rule is needed. Insert a new vertex in every triangle

5 5
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Figure 4: Stencil for the computation of a new vertex. The
left is the case of regular vertices and the right is the case of
extraordinary vertices.

A(P;,Pj,P;) of a mesh and the position of the new vertex q
is computed by the formulae as follows:

Gi= LB+ P+ S (AP +AP) HAR))  (4)

3 3
=f(P)+f(P))+f(P) (5)
F(P) = 13— 2cos(7“)P_4—2cos(7"1 Y 0 ©
27 27 L)

where A(P) is the displacement of the vertex P during one
step of v/3 Subdivision. Note that, the weight coefficients
of this new interpolatory /3 Subdivision mask can been de-
scribed in explicit formulation (5) wherever at regular ver-
tices or extraordinary vertices.

(© The Eurographics Association 2007.
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Figure 5: Subdivision a simple hole model with valences
5,6,7,8 vertice(left), subdivided with modified Butterfly
scheme(middle) and the new interpolatory \/3-subdivision
scheme(right).

Figure 6: Subdividing a bunny model with the new interpo-
latory V/3-subdivision scheme.

5. Approximation and interpolatory blended /3
Subdivision.

In this section, a unified scheme for compositing approxima-
tion and interpolatory /3 subdivision is proposed by adding
a parameter o to control the subdivision surfaces to approach
the control meshes. Two rules were used, one for inserting a
new vertex in every triangle and a second for computing new
positions of the already existing vertices. The position for
newly inserted vertex q and its parameter weight o, in trian-
gle A(P;, P}, Py) is computed by the formulae as follows:

1
Og =3 (o4 + 0t + o) @)
q:= (P, 0) + f(Pj,05) + f (P, 0 ) ®
1
S(Po) = 3 (P+0A(P)) ©
2
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The formula for the relaxation of the old vertices q:
q:=q—(1-0g)Alg) (11
_ (5+4tx,,+2(19—(x,1)cos(27"))q+ (l—aq)(4;2cos 7" Z

The original value of the parameter o; of each control
point is given by the user. When o; = 0, it produces v/3 sub-
division scheme. When o; = 1, it produces the new V3 inter-
polatory subdivision scheme. When o; € (0,1), the shrink-
ing or bulge between the limit mesh and original mesh are



Shujin Lin & Xiaonan Luo / EG BIEX A Unified Interpolatory and Approximation \/3 Subdivision Scheme

smaller than the approaching scheme or the interpolating
scheme. This can be used to solve the "popping effect" prob-
lem when switching between meshes at different levels of
resolution.

It also provide the possibility to locally choose an inter-
polating variant of the conventionally approximating sub-
division scheme. Let o; of the interpolated original control
points be 1, a; of the approached original control points be
0, examples are shown in figure 7.

2000
0000

Figure 7: Examples of our unified \/3-subdivision scheme
with different choices of o. The top row, from left to right,
demonstrates control mesh, subdivided meshes with o. = 1.0,
a=0.8, a = 0.5, respectively. The bottom row, from right to
left, shows subdivided meshes with o = 0.2, & = 0.0, and
two examples generated by interpolating some of the origi-
nal control points only.

6. Continuity Analysis

By definition, the subdivision matrix is a square matrix S
which maps a certain sub-mesh V € M} to a topologically
equivalent submesh S(V) € My of the refined mesh. As
have analyzed in [Kob00] [ULOO], for the applied refinement
operator it is not possible to directly use this matrix. This is
because of a 30° rotation being performed when splitting the
triangles. Therefore we subdivide the mesh twice leading to
a 60° rotation which is corrected by resorting the vertices.
This is done by multiplying the matrix with a permutation
matrix R. So we heve to analyze the matrix: § = RSS.

When o = C, the unified scheme is a uniform stationary
subdivision scheme. Let C € [0,2] and take numerical ver-
ification by Matlab, the leading eigenvalue of each S have
following conditions:

Forn>3,M=1M=Ah>A=N
Forn=3,A=1,A =X > A3

According to [Rei95] [Zor97], it’s a necessary condition
for the convergence of the subdivision scheme to a C' con-
tinuous surface. The local regularity of the subdivision sur-
face at extraordinary vertices requires the injectivity of the
characterisitc map. One sample of isoparameter lines for
these maps in the vicinity of irregular vertices are showed

Figure 8: Visualization of regularity and injectivity of char-
acteristic maps for valence n = 3,4,5,7,8.

in figure 8. However, when the parameters oc? have un-
equal values, the convergence analysis of such non-uniform
schemes at extraordinary vertices is still an open question.

7. Conclusions

In this paper, we have constructed a approximation and in-
terpolatory blended subdivision scheme. It realizes the pos-
sibility to force the limit surface to go through a particular
set of control points without needs of constructing and solv-
ing equations. It is also used to solve the "popping effect”
problem and give more flexibility for feature modeling. Here
we focus on /3 subdivision, however some other subdivi-
sion schemes can be treated in a similar way. The conver-
gence analysis of the unified subdivision scheme in curve
case is orbicularly proved, and the analysis for the muliti-
dimensional case of regular meshes can also be easily proved
by this way [NDO2]. However,the convergence analysis of
such non-uniform schemes on extraordinary vertices is still
an open question.
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