Appendix: Curve case

1. Unified interpolatory and approximation
curve subdivision

Given the original control vertices P°(i=1,2...n),

the unified scheme defines points at level j+1 of the
recursion by:
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When a =0, the subdivision scheme produces

cubic B-splines in the limit. On the other hand, when
a =1 produces four-point curves in the limit.

In order to force the limit surface to go through a
particular set of control points, permit the parameter ¢
of each vertex to be unequal. Thus, we get the
following non-uniform unified subdivision scheme.

Given the original control vertices P° and their

weights (i =1,2..n) , the non-uniform unified
scheme defines points at level j+1 of the recursion by:
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When ¢, =« , it is a stationary uniform subdivision
scheme as same as the scheme defined in equation (1).
When ¢’ =1, the limit curve interpolates the control

vertices P° . Figurel shows the influence of the

parameter on the subdivided control vertices after
several refinements.

2. Convergence and smoothness analysis

A well-known method for analyzing convergence
and smoothness of curve subdivision schemes have
been presented by Dyn and Levin [Dyn02]. Here, we
used the method to proof that our uniform unified

scheme is C!, and proof that our non-uniform unified
stationary scheme is C* when ¢, €[0,1].

2.1. Analysis of univariate uniform unified
schemes

Following the framework of [Dyn02], a binary
subdivision scheme is a convergent if there is a
function p:R— R with the property that for any
compact set K < R, lim max | pf - p(2*i)|=0-

k—>wjezn2" K
The refinement rule in equation (1) at refinement
level k can be written of the form:
pt = Zai_zj pe or simply as p“t=s, p
jeZ
The symbol of S, is the Laurent polynomial
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This can be written as
a(z) =%(1+ 2)°b(z).
where
b(z):a—lz yl2,870 0 e a1,
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By Corollary of [Dyn02], if S, is contractive then S,
is C*. Defining
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where b'(2) ==b(2)b(z?)---b(z% ).
we find that
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which shows that S, is contractive. So, S, is C*.
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2.2. Analysis of non-uniform unified schemes

A non-uniform linear binary subdivision scheme
can be represented by a bi-infinite sequence of

generating polynomials {f(j,k)(z)} where each f,
is the polynomial representing the scheme generating
p‘j‘,k >1,jeZ.Thatis,
Pt = Z fiki-zi P
ieZ
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where j :[j/z] . By Corollary of [Dyn02], to check if

the scheme {f, (z)} is C" it is enough to prove that

{é'{jvk)(z)} is contractive, and it is enough to show
that there exists pe[0,1) such that each of the
following four inequalities holds for any j and k :
|q,9|+|q,5|+|q,1|+|q3|ﬁp J |q,8|+|q,4|+|q0|ﬁp '

|| +[s] +]ay| < o and | g +[a | +a| < -
To simplify the notation let us denote the
parameters in (5) as t = m=1..5 and

i—4+m?
t =a?> m=6,7,8. Now we have to show that

m — “j-8+m?

above four inequalities are satisfied for some fixed

p €[0,1) forany a:f €[0,1] - The four inequalities take
the form:

6i4[(t8 —1)(4+2t, —4t, +2t,) + (t, —1)(4+2t, — 4t, + 2t))
+2(6+t, —4t, +t;)(1+t, -2t -t,)] < p (6)
3%[(1443 —t,)(4+2t, - 4t, +2t,)

+2(1-t, —t)(2+t, - 2t,—t,)|< p D
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+2(1—-t,)(4+2t, —4t, +2t,) - 2t, +8t, -8, + 8, + 2t < p  (8)

é[2(1+t8 )2+t -2t, - t,)

+(1-t, —t)(4+2t, -4t + 2t)] < p €D
The inequalities (6)(7)(8) and (9) are easy satisfied
with p:% forany t <[0,1].

Thus, the scheme {f;, (z)} is C".

Figurel Curve samples of our unified schemes with different value of parameter. From the inside curve to the outside curve
where o =1 = 0.5 = 0.2; ¢ = 0 respectively. The first figure is subdivided once, the others are subdivided quartic. The
right two are samples forcing the limit surface to go through a particular set of control points whose ¢ =1.



