
EUROGRAPHICS 2006 / D. W. Fellner and C. Hansen Short Papers

Simulating Drilling on Tetrahedral Meshes.

G. Turini 1 F. Ganovelli2 C. Montani2

1 Endocas Centre of Excellence for Computer Aided Surgery, Pisa, Italy
2 Visual Computing Laboratory, ISTI-CNR Pisa, Italy

Abstract
Bone drilling is a fundamental task in several surgical procedures, including mastoidectomy, cochlear implanta-
tion, orbital surgery. It consists in eroding the part of the bone in contact with the tip of the surgical tool when a
sufficient pressure is exerted.
Since the bone is an almost rigid material, the bone drilling simulations usually employ voxel-based represen-
tations of the bone, so that it is easy to show material removal by playing with material density in the voxels.
Unfortunately, there are cases in which drilling is only a part of the task, and parts of the same object are also cut
away or, worse, the bone is slightly deformable and therefore voxel-based representations do not work well.
We propose a novel method to simulate drilling on objects represented explicitly by means of a tetrahedral mesh.
The key idea of our method is to create an alternative representation of the tetrahedron when it is partially eroded.
Such representation consists of a set of smaller tetrahedra obtained by a hierarchical decomposition of the original
one, and combined to represent the current status of the erosion.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]: An-
imation I.3.5 [Computational Geometry and Object Modeling]: Physically based modeling I.3.5 [Computational
Geometry and Object Modeling]: Hierarchy and geometric transformations

1. Introduction and Related Work.

Drilling, like cutting, is a task that changes the shape and
possibly the topology of an object. If the object is static or
at least rigid, volumetric methods employing regular decom-
position of the space are a natural choice. Unfortunately, this
kind of methods is hardly usable if the object is deformable.
In this paper we propose a method to perform drilling on
objects represented by means of tetrahedral meshes. A vast
literature exists both on methods for deriving a tetrahedral
mesh from CAT/RM data and for performing physical sim-
ulation of solids employing tetrahedral meshes. Tetrahedral
meshes are easy to render (since their border is made of tri-
angles) and can be used to simulate material with non uni-
form density thanks to the fact that, in contrast with surface
meshes, the volume is explicitly represented.

If the object is densely discretized, one trivial way to re-
move material is simply to remove tetrahedra, as in [CA99].
However, the number of tetrahedra strongly influences the
performance of the physical simulation and therefore we
have two opposite constraints: a high number of tetrahedra

for rendering drilling and a low number for physical sim-
ulation. We decouple the drilling from the physical simu-
lation by allowing the representation of the drilling at sub-
tetrahedral level. This representation is defined by a hierar-
chical decomposition scheme of the tetrahedron, obtained by
recursively splitting tetrahedra in 8 new tetrahedra. When a
tetrahedron of the original mesh come to contact with the
tool, this scheme is applied to adapt the granularity of the
description to those of the tool, so that the removal of the
material can be done by simply removing tetrahedra. The
advantages of our approach are twofold: 1) it is independent
on the method adopted for physical simulation. 2) collision
detection, haptic and visual rendering rendering are modeled
at sub-tetrahedral level.

Most of the approaches in the present literature consider
the object as rigid and therefore suitable for a regular dis-
cretization of the space. In [MPT99] the space contain-
ing static objects is partitioned into voxels and the surface
of the moving objects is sampled with point and normals
(hence the namevoxmap-pointshell). When a point is inside

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org


G. Turini F. Ganovelli C. Montani / Bone Drilling

a non-empty voxel, penetration and, consequently, feedback
is computed by considering thetangent plane, i.e. the plane
passing through the center of the voxel and oriented like the
point normal. In [PPT∗02] this approach has been extended
to represent material subtraction in the simulation of petrous
bone surgery. In [MSB∗04] the voxmap is used for haptic
rendering while visual rendering is achieved by building a
triangular mesh with vertices placed in the voxels vertices
and normal and texture coordinates derived from the infor-
mation contained in the voxel. In [AGG∗02] the volume is
stored as a stack of textures rendered back to front. Eroding
a region consists of making the proper set of texels transpar-
ent, while a correct lighting can be obtained during fragment
processing. With respect to the previous approaches, the lat-
ter makes a better use of the graphics hardware and is there-
fore more efficient, even if limited by a stricter bound for
memory usage. Mesh based approaches are widely used for
performing cuts [BMG99, GCMS00, NvdS00] and in some
case also for rendering material removal [AGP∗06, SC98]
but the accuracy of the cut is strictly dependant on the the
size of the mesh elements.

2. Our Approach

Our method considers each tetrahedron as the root of a hi-
erarchy where each node is a tetrahedron and its children
are obtained by refining the parent node in 8 smaller tetra-
hedra as shown in Figure 1. Every frontier in this hierarchy,
i.e. every set of tetrahedra such that on all paths from the
root to the leaves exactly one node is contained in the set,
corresponds to a representation of the tetrahedron itself. We
represent the subtraction of a region of a tetrahedron by com-
puting a frontier in the hierarchy such that no tetrahedra big-
ger than a given threshold crosses the border of the region
and by tagging the nodes of the hierarchy inside the region
aserased.

Figure 1: Tetrahedral subdivision scheme.

2.1. Data structures and basic operations on hierarchies

Our method relies on two basic operations:refine a node
anderasea node. In both cases it must be determined which
faces of the tetrahedra in the frontier are (even partially) visi-
ble and therefore are to be rendered and considered for colli-
sion detection. In other words, for each face of a tetrahedron

we need to know if it iscoveredby the union of all the other
tetrahedra in the frontier. If not, the face is visible.

If the frontier of the hierarchy was a simplicial complex
the solution would be trivial: for each tetrahedront belong-
ing to the frontier, if the tetrahedron adjacent tot by the face
i is not erased, then the facei is not visible. Our case is more
complicated because a tetrahedron can be adjacent to sev-
eral tetrahedra by the same face (see nodea in bottom left of
Figure 3).

At the beginning, when the frontier is made by the root
of the hierarchy (the original tetrahedron) the visible faces
of the original tetrahedron are those not shared by any other
tetrahedron in the mesh. We describe how to keep the visible
set of faces up to date after each operation.

Data Structure Each node of the hierarchy contains an inte-
ger index (unique within a tree) that encodes its topological
location, a pointer to each of the children nodes and to the
parent node, four bits to indicate which faces of the corre-
sponding tetrahedron are visible and one bit to indicate if the
tetrahedron has been erased. The index of the root is 0, the
children of a nodei are numbered from 8i+1 to 8(i+1)and
the parent of the nodei is numberedbi/8c. The part of hi-
erarchy actually instantiated is only the part from the root to
the frontier. To render visible faces, we should visit the hier-
archy at every frame and render the faces marked as visible.
Instead we link the non erased nodes in a list, calledv_list
(see Figure 2), that we keep up to date during the Erase and
Split operations. Therefore two more pointers are added to
the node data structure.

We also use a static table, namedTree Table, containing
all the data we need that can be derived once for all from
the subdivision scheme. Theidth row contains: four couples
(index, f ace) identifying the nodes at the same level of the
hierarchy (log8 i) adjacent toid and the index of the face they
share; four triples of floats identifying the barycenter coor-
dinates of the four vertices of the tetrahedronid with respect
to the original tetrahedron (the node 0). We also number the
faces of the tetrahedra so that the following holds: if the face
i of the tetrahedront lies on a face of the parent tetrahedron
p, then the index of this face inp is i as well.

Let t a tetrahedron andi|i = 0..3 its four faces. We de-
fine theNeighbors Tree NTree(t, i) (see Figure 3) as the tree
made of the path from the first common ancestor between
t and ad j(t, i) to the nodet (note that the facei of every
node in this path includes the facei of t) plus the subtree
rooted att restricted to the nodes with a face lying on the
face(t, i). Please note that theNtree is not explicitly built,
this is simply notation added to specify a particular visit of
the hierarchy.

OperationErase.
For each face(t, i), access the table at the rowt and find
out the indexad j(t, i) of the node adjacent tot by i and
the corresponding facej ∈ {0..3}. Then visit the nodes of

c© The Eurographics Association 2006.

128



G. Turini F. Ganovelli C. Montani / Bone Drilling

theNTree(ad j(t, i), j) in any order (depth first for example),
setting to visible all the leaf nodes encountered and adding
them to thev_list, if not already present. Finally removet
from thev_list.

OperationRefine.
If the face(t, i) is not visible, then all the faces indexedi of
the eight children are not visible. If(t, i) is visible, we could
conservatively set as visible all the facesi of its children, but
some of them can actually be not visible according to our
definition (see bottom left part of Figure 3). So, for each one
of the four couples(c,i) referring tetrahedra with faces lying
on (t, i) fetch the adjacent (node,face)(ad j(c,i), j) and visit
theNTree(ad j(c,i), j) . If at least an erased leaf is encoun-
tered in this visit, the face(c,i) is set to visible.

Figure 3: In this figure we scale down to two dimensions to
simplify the illustration. Top: the NTree for the node adja-
cent toa by the rightmost face. Note that the nodes in the tree
are all the nodes with a face partly in common with the face
of a. Bottom: the nodea is being refined. The highlighted
part is visible but not all its children have the face visible,
sincec andd are both in the frontier and not erased.

3. The system

The simulator developed is amulti-threadedapplication
formed by three threads: the visual rendering thread, the col-
lision detection thread and the haptic thread.

3.1. Rendering thread

At this stage the rendering is quite naive. We simply ren-
der all the visible faces of tetrahedra. If a tetrahedron has
been eroded, then we run through itsv_list and render each
visible face of the nodes in the list. We employ a simple opti-
mization consisting in compiling a display for each tetrahe-
dron, containing the rendering of itsv_list. The display list
is recompiled every time thev_list is modified and called to
render the tetrahedron when it is not being eroded.

3.2. Collision handling thread

Collision detection is a crucial task because it determines
all the actions to be performed on the tetrahedra (Erase and
Refine) and the feedback to return to the haptic interface.
The surface of the drilling instrument is sampled with an
evenly distributed set ofsample points. The sample points
can be active, i.e. belonging to the eroding part of the tool,
or passive. Asample pointhas: a position, ana-flag indi-
cating whether it is active, a radius to define its sphere of
action, ani-flag to dynamically mark the points that inter-
act with the mesh. To test for collision detection, we use the
sample points placed on the surface of the tool and the spa-
tial hashing technique proposed in [THM∗03]. The thread’s
cycle starts by updating tool position and direction.
Then we use thehash tableto detect a subsetT of border
tetrahedra (i.e. tetrahedra with at least a visible face) possi-
bly intersecting with the tool. IfT is empty we are done. Oth-
erwise we analyze all the activesample pointson the surface
of the tool (setA).
For each point ina ∈ A and each tetrahedron int ∈ T we
found out whethert crosses the border of the sphere with
radiusr centered ata. If it does, we refine the tetrahedron
and recur to the children nodes. This strategy requires a dy-
namic updating of thev_list with the insertion of the newly
generated visible nodes.

The refinement ends when all the nodes in the frontier are
no further refinable: this happens if the maximum depthdmax

has been reached or when their surface area is lower than a
given thresholdamin.
When refinement is completed, thev_list nodes that are lo-
cated within the erosion sphere are eroded. The erosion pro-
cedure consists of applying theEraseoperation to all such
nodes.

During collision detection we also compute the penetra-
tion depth and direction to render forces. The passive sample
points are tracked frame by frame, and the segment formed
by two consecutive point positions is tested for intersection
with the visible faces inT. For the active sample points we
compute the penetration as the difference between the radius
of the active sample point and its distance to the mesh.
This makes easy to handle collisions when the eroding part
is a sphere, because we use a single active point in the sphere
center with radius equal to the radius of the sphere (see
bottom-right part of Figure 3).

3.3. Haptic interaction thread

The haptic interface management thread essentially updates
the tool accordingly to the haptic interface movements and
ensure the high rendering frequency of force feedback. This
last requirement is essential to simulate a realistic haptic in-
teraction.
Since the collision detection cycle, on which penetration
depth depends, has an updating rate too low, we use extrap-

c© The Eurographics Association 2006.

129



G. Turini F. Ganovelli C. Montani / Bone Drilling

Figure 2: A tetrahedron eroded (left), its hierarchy (center) and the TreeTable (right).

olation to compute the forces to give to the haptic interface
at high frequency (around 500Hz).

4. Results

Our early tests concern the collision detection, the handling
of geometry and the updating rate of the three threads. The
object is still static, even if this is not assumed anywhere in
the implementation.

Figure 4: Data produced during the recording of the video
cube: the number of nodes and visible faces and the updat-
ing rates of the visualization and collision handling threads.

All the tests were run on a Intel Pentium IV with 1G of
RAM and a nVidia 6800 graphics card. Figure 4 shows the
performance of the algorithm in a test case made of a cube
decomposed in 12 tetrahedra by adding a vertex in the cube
center. As can be seen in Figure 4.(a) the number of tetra-
hedra (i.e. nodes) increases rapidly during the erosion. How-
ever, this growth does not influence the performance of the
method as one could expect. In terms of memory occupation,
the node requires only 5 bytes instead of the 16 required by
the tetrahedron to store the pointer to the vertices. In terms
of rendering time, see Figure 4.(b), the visible faces of the
nodes of the tetrahedron are all contained in the same dis-
play associated with the tetrahedron, which is recompiled
only when its tree is being modified. One drawback of the
current version of the method is the rendering of the eroded
regions. Since each face is flat shaded, it is easy to spot the
triangles and the appearance is jagged. This effect is only
mildly mitigated by a greater number of refinement steps,
or, equivalently, by a greater distance of the region to the
point of view. Figure 5 shows a snapshot of the cube at the
end of the process.

Figure 5: A screenshot of the videocube.

5. Conclusions and Future Work

This paper presents a novel non volumetric approach to sim-
ulate drilling on tetrahedral meshes. In contrast to existent
methods, the object under drilling does not need to be rigid,
and no assumption is done on the way the physics is simu-
lated. Although the method is fairly efficient, a technique for
a more accurate and possibly efficient visualization of the
drilled regions is under investigation. A second issue con-
cerns the topological and physical changes due to erosion.
As previously said, the sub-tetrahedron subdivision in used
only for visual and haptic rendering. This implies that even
if the erosion causes the splitting of the object in two parts,
these will still be connected as they were before. Fortunately
we can use the stored hierarchy of nodes to find out if a sin-
gle tetrahedron has been split and consequently update the
physical simulation. These algorithms are being integrated
at the time of this writing.

References

[AGG∗02] AGUS M., GIACHETTI A., GOBBETTI E., ZANETTI G., ZORCOLO A.:
Real-time haptic and visual simulation of bone dissection. InIEEE Virtual Reality
Conference(Conference held in Orlando, FL, USA, March 24–28, Feb. 2002), pub-
IEEE, pp. 209–216.

c© The Eurographics Association 2006.

130



G. Turini F. Ganovelli C. Montani / Bone Drilling

[AGP∗06] AGUS M., GOBBETTI E., PINTORE G., ZANETTI G., ZORCOLOA.: Real-
time cataract surgery simulation for training. InEurographics Italian Chapter Confer-
ence(Conference held in Catania, Italy, 2006), Eurographics Association.

[BMG99] BIELSER D., MAIWALD V., GROSS M.: Interactive cuts through 3-
dimensional soft tissue.Computer Graphics Forum (Eurographics’99 Proc.) 18, 3
(Sept. 1999), C31–C38.

[CA99] COTIN H. D. S., AYACHE N.: A hybrid elastic model allowing real-time cut-
ting, deformations and force-feedback for surgery training and simulation. InCAS99
Proceedings(May 1999), pp. 70–81.

[GCMS00] GANOVELLI F., CIGNONI P., MONTANI C., SCOPIGNOR.: Enabling cuts
in multiresolution representation. InCGI 2000 Proceedings(2000), N.Magnenat-
Thalmann, D.Thalmann, (Eds.), p. (in press).

[MPT99] MCNEELY W. A., PUTERBAUGH K. D., TROY J. J.: Six degree-of-freedom
haptic rendering using voxel sampling. InSIGGRAPH(1999), pp. 401–408.

[MSB∗04] MORRIS D., SEWELL C., BLEVINS N., BARBAGLI F., SALISBURY K.:
A collaborative virtual environment for the simulation of temporal bone surgery. In
MICCAI (2) (2004), Barillot C., Haynor D. R., Hellier P., (Eds.), vol. 3217 ofLecture
Notes in Computer Science, Springer, pp. 319–327.

[NvdS00] NIENHUYS H.-W., VAN DER STAPPEN A. F.: Combining finite element
deformation with cutting for surgery simulations. InEuroGraphics Short Presentations
(2000), de Sousa A., Torres J., (Eds.), pp. 43–52.

[PPT∗02] PETERSIK A., PFLESSERB., TIEDE U., HÖHNE K. H., LEUWER R.: Hap-
tic volume interaction with anatomic models at sub-voxel resolution. InSymposium on
Haptic Interfaces for Virtual Environment and Teleoperator Systems(2002), pp. 66–72.

[SC98] STEPHANE COTIN HERVE DELINGETTE N. A.: Efficient Linear Elastic Mod-
els of Soft Tissues for real-time surgery simulation. Tech. rep., Institut National de
Recherche en Informoatique et en Automatique, 1998.

[THM∗03] TESCHNER M., HEIDELBERGER B., MÜLLER M., POMERANETS D.,
GROSSM.: Optimized spatial hashing for collision detection of deformable objects. In
Proceedings of the Conference on Vision, Modeling and Visualization 2003 (VMV-03)
(Berlin, Nov. 19–21 2003), Ertl T., Girod B., Greiner G., Niemann H., Seidel H.-P.,
Steinbach E., Westermann R., (Eds.), Aka GmbH, pp. 47–54.

c© The Eurographics Association 2006.

131


