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Abstract
We present two new methods for visualizing cross-sections of 3D diffusion tensor magnetic resonance imaging
(DTI) volumes. For each of the methods we show examples of visualizations of the corpus callosum in the mid-
sagittal plane of several normal volunteers. In both methods, we start from points sampled on a regular grid on the
cross-section and, from each point, generate integral curves in both directions following the principal eigenvector
of the underlying diffusion tensor field. We compute an anatomically motivated pairwise distance measure between
each pair of integral curves and assemble the measures to create a distance matrix. We next find a set of points
in a plane that best preserves the calculated distances that are small—each point in this plane represents one of
the original integral curves. Our first visualization method wraps this planar representation onto a flat-torus and
then projects that torus into a visible portion of a perceptually uniform color space (L*a*b*). The colors for the
paths are used to color the corresponding grid points on the original cross-section. The resulting image shows
larger changes in color where neighboring integral curves differ more. Our second visualization method lays out
the grid points on the cross section and connects the neighboring points with edges that are rendered according
to the distances between curves generated from these points. Both methods provide a way to visually segment 2D
cross sections of DTI data. Also, a particular contribution of the coloring technique used in our first visualization
method is to give a continuous 2D color mapping that provides approximate perceptual uniformity and can be
repeated an arbitrary number of times in both directions to increase sensitivity.

1. Introduction

Diffusion-Tensor Magnetic Resonance Imaging (DTI) en-
ables the exploration of fibrous tissues such as brain white
matter and muscles non-invasivelyin-vivo. It exploits the
fact that water in these tissues diffuses at faster rates along
the fibers than orthogonal to them. However, the multival-
ued nature of DTI data poses challenges in visualizing and
understanding the underlying structures. Integral curves that
represents neural pathways by showing paths of fastest diffu-
sion are among the most common information derived from
DTI volumes. They are generated by tracking the principal
eigenvector of the underlying diffusion tensor field in both
directions. They are often visualized with streamlines or
variations of streamlines (streamtubes and hyperstreamlines)
in 3D. In this paper, we present two new methods for visual-
izing cross sections of DTI volumes that incorporate the 3D
out-of-plane connectivity information typically conveyed by
the integral curves (see Fig. 1). Slice-based 2D visualiza-
tions of scientific data are generally effective, fast and syn-
optic [CM02,SWD04]. Also, looking at 2D cross-sections is
still the most common practice by far among scientists and
physicians for data exploration. Furthermore, there is some
anecdotal evidence that incorporation of 2D cross-sections

in 3D visualizations of medical data sets data is preferred by
the same group [DJK∗06].

For each of our visualization methods we show exam-
ples of visualizations of the corpus callosum in the mid-
sagittal plane of three normal volunteers. The corpus cal-
losum is the largest white matter fiber bundle in the brain
and a target for clinical and neuroscience research into nor-
mal developmental vs. pathological changes in white matter
integrity across the lifespan and the functional correlates of
those changes. Distinct cross-sectional regions of the corpus
callosum may contain fibers that subserve specific cognitive
or behavioral functions mediated by the cortical regions to
which they project. Proxy measures (e.g., thickness, volume,
area, shape) of the health of these cross-sectional regions
may correlate with measures of the cognitive and behav-
ioral functions they subserve. In fact, the corpus callosum
has been shown to differ on such measures by handedness,
gender, and age as well as in disorders such as Alzheimer’s
disease and schizophrenia [HJL∗04].

2. Related Work
Mapping colors to data values is a fundamental operation
in scientific visualization. Previous work based on empiri-
cal studies addressed the problem of generating perceptu-

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org


Figure 1: Flat-torus coloring (left) and edge rendering (right) visualizations of the mid-saggital plane of the corpus callosum
in a normal person’s brain

ally effective colormaps [War88,Hea96,LH92,KRC02]. We
use the CIE L*a*b* color space that is a perceptually uni-
form (approximately) color space proposed by the Commis-
sion Internationale de l’Eclairage (CIE) in 1976. A color
space is said to be perceptually uniform if the perceptual
difference between any two colors in just noticeable dif-
ference (JND) units is equal to the Euclidean distance in
that color space. Several different geometric models, includ-
ing line, plane, cone, cylinder, and B-spline surfaces have
been proposed for univariate, bivariate or trivariate color
mapping [Pha90, Rob88]. We extend the earlier models by
introducing the flat-torus model to give a continuous 2D
color mapping that is approximately uniform and that can
be repeated an arbitrary number of times in both directions
to increase sensitivity. Integral curves generated from DTI
volumes have been visualized generally with streamlines in
3D with different geometric (i.e., hyperstreamlines, stream-
tubes, etc.) and coloring combinations. In a work that is con-
ceptually partly similar to our work, Brunet al.colored DTI
integral curves by embedding them in 3D RGB space using a
non-linear dimensionality reduction technique [BPKW03].
Volume visualization of DTI data included isosurface ex-
traction and volume rendering. Previous cross-sectional vi-
sualizations of DTI mapped glyphs (box, ellipsoid and su-
perquadratic) and colors to tensor voxels [ZKL04]. Paje-
vic et al.proposed methods to colormap DTI cross-sections
according to principle eigenvectors of tensor voxels using
different color spaces, including perceptually uniform CIE
L*u*v color space. The authors point at the potential limi-
tations due to the irregularity of the L*u*v space. Our flat-
torus model addresses some of the limitations discussed in
this work [PP99].

3. Methods
In both visualization methods presented here, we start from
points (seeds) sampled on a regular grid on the cross-section
and, from each point, generate integral curves in both di-
rections following the principal eigenvector of the underly-
ing diffusion tensor field. We compute an anatomically mo-
tivated pairwise distance measure between each pair of inte-
gral curves and assemble the measures to create a distance
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Figure 2: Polyline representations of two integral curves Ci
and Cj

matrix. The distance matrix is utilized by the both methods
to convey the out-of-plane connectivity information. We ex-
plain how we measure distances between the integral curves
to construct the distance matrix in the next section.
3.1. Distance Measure Between Integral Curves
Integral curves generated from DTI volumes are solutions to
the first-order differential equationdC

ds = ~v1(C(s)), wheres
parameterizes the curve andv1 is the principal eigenvector
at the pointC(s) = (x(s),y(s),z(s)). We compute the inte-
gral curveC(s)passing through a given seed pointC(0) (ini-
tial conditions) by integrating the above equation fors> 0
ands< 0 (i.e., both directions from the seed point). There
have been different distance measures proposed for integral
curves generated from DTI volumes [MVvW05]. In the cur-
rent work we adapt a measure proposed by Zhanget al.with
a slight modification [ZDL03]. The measure is anatomically
motivated in that it is designed to increase whenever one path
has points that are not near the other path. Note that our mea-
sure does not necessarily satisfy triangle inequality, there-
fore, it is not a metric. Given any two integral curvesCi and
Cj that are represented as polylines withmandn vertices re-
spectively (like the ones shown in Fig. 2), we first find mean
distancesdi j anddji then, determine the maximum of these
two distances as the distanceDi j between the two curves:

di j =
∑m

k=1dist(Ck
i ,Cj)

m
, dji =

∑n
k=1dist(Ck

j ,Ci)

n
(1)

Di j = Dji = max(di j ,dji ) (2)
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Figure 3: Flat-torus coloring of the mid-sagittal of the cor-
pus callosum in a normal person’s brain

distance fitting

Figure 4: Seed points are adjusted so that Euclidean dis-
tances between the points on the plane reflect the distances
between their associated integral curves.

The functiondist(p,C) returns the shortest Euclidean dis-
tance between the pointp and curveC. We compute distance
between each pair of integral curves as we denoted and as-
semble the measures to create a distance matrix. The dis-
tance matrix is a real positive symmetric matrix with zeros
along the diagonal.

3.2. Flat-Torus Coloring
The goal of our first method is to reflect the boundaries in
distance differences in the data as perceptual boundaries.
For this, we lay out the seed points on a plane and adjust
their positions using a simple mass-spring-based optimiza-
tion algorithm so that the calculated distances between their
associated integral curves are best preserved locally. Fig. 4
illustrates how seed point coordinates change after running
the optimization algorithm. We coordinate-transform the ad-
justed points using principle component analysis (PCA) to
have a succinct representation. Finally, we wrap this planar
representation onto a flat torus and then projects that torus
into a visible portion of the CIE L*a*b* space. A flat-torus
in 4-space is a Cartesian product of two circles inR2. It can
be obtained by a mappingW : R2 → R4 such that

W(x,y) = (u,v,z,t) = (r1cosx, r1sinx, r2cosy, r2siny) (3)

wherer1 andr2 are the radii of the circles. The flat-torus
has 0 Gaussian curvature everywhere (i.e., is a developable
surface), therefore a plane can be wrapped around it without
distortion [dC76].

We project the flat-torus to the visible partition of L*a*b*
color space, centered at(Lo,ao + r1,bo + r1) as follows:

L∗= Lo+ t, a∗= ao+ r1+u+z, b∗= bo+ r1+v+z (4)

Note that this projection is not isometric. It has two lines
of self-intersection (where different (x,y) points map to the

Figure 5: Edge rendering visualization of the mid-sagittal
plane of the corpus callosum in a normal person’s brain.

same colors) as well as distorting the angles between the co-
ordinate directions. We discuss this further in Sec. 4. For the
examples shown in this paper, we locate the projected toric
in the L*a*b intervalI = (IL, Ib, Ic), whereIL = [60,80],Ia =
[−50,30],Ib = [−20,60] and user1 = 10, r2 = 40. The re-
sulting images show larger changes in color where neigh-
boring integral curves differ more. One of the advantages of
using this flat-torus projection is that we can adjust the sen-
sitivity of the color mapping by rescaling point plane and
wrapping around the two circles continuously.

3.3. Edge Rendering
Our second visualization method lays out the grid points
on the cross section and connects the neighboring points
with edges that are rendered according to the distances be-
tween curves generated from these points. Note that we sam-
ple seed points on a rectilinear grid where the vertical and
horizontal distances between the grid points are equal to
δ . We define the seed pointsXi and Xj to be neighbors if
||Xi − Xj ||2 = δ or ||Xi − Xj ||2 = δ

√
2 (i.e., a seed point

can have maximum 8 neighbors). Edges are drawn redder
in color and thicker where neighboring seed points’ integral
curves differ more.

4. Results and Discussion
Figs. 3 and 5 show the visualizations of the same normal
person’s corpus callosum with close-up views of the same
region. Notice the correspondance between regions in flat-
torus coloring and edges in edge rendering. Other results
from two DTI brain data sets are shown in Fig. 6. It is im-
portant to note that the perceptual uniformity in our color
mapping is an approximation, because the flat-torus cannot
be mapped to three dimensions isometrically. Our projection
can deemphasize changes in certain regions of the flat torus.
There are other projections that may be closer to isometric,
and it also may be possible to add a fourth perceptual dimen-
sion like texture to the three color dimensions, removing the
need for a projection and preserving the properties of the flat
torus.

5. Conclusions
We have presented two new cross-sectional visualization
methods. The primary strength of both methods is providing
a compact and contextual visualization by bringing higher
dimensional connectivity information onto a 2D plane which
is effective and familiar to practitioners. We have applied
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Figure 6: Flat-torus coloring (left) and edge rendering (right) visualizations of the mid-saggital plane of the corpus callosum
in two normal persons’ brains.

them to visually segment the mid-saggital cross-section of
the corpus callosum in the brain. Feedback from neurosci-
entist collaborators suggests that our visualization methods
can be useful in identification of smaller caliber anatomi-
cally or functionally related white-matter structures, partic-
ularly those that are contained within large bundles or fas-
ciculi that project to multiple areas. Flat-torus coloring is a
new geometric model for bivariate color mapping that is ap-
proximately uniform perceptually and that can be repeated
an arbitrary number of times in both directions. The under-
lying idea of this work can be extended to visualization of
other vector, tensor or multi-scalar data volumes.
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