
EUROGRAPHICS 2006 / D. W. Fellner and C. Hansen Short Papers

Exploring Flow Fields with GPU-Based Stream Tracers
in Virtual Environments

Marc Schirski,†1 Christian Bischof2 and Torsten Kuhlen1

1Virtual Reality Group, RWTH Aachen University
2Institute for Scientific Computing, RWTH Aachen University

Abstract
In this paper we present an immersive visualization approach for the intuitive exploration of flow fields, which
operates entirely within the graphics subsystem. We augment particle data with a brief history of their recent posi-
tions, thus effectively computing and displaying animated tracers facilitating the understanding of the underlying
flow field. Image quality is enhanced by employing a billboard-based rendering method for the particle trajec-
tories simulating lit tubular geometry. This leads to significantly reduced depth perception problems and depth
order ambiguities. Interactivity is maintained even for large amounts of tracers by shifting the computational load
to the GPU. We alleviate 3D seed point specification problems by offering interaction mechanisms with full 6
degrees-of-freedom within an immersive virtual environment.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Virtual Reality, I.3.6
[Computer Graphics]: Interaction Techniques, I.3.3 [Computer Graphics]: Display Algorithms

1. Introduction

A very intuitive means of visualizing fluid flow is the ad-
vection of matter inside a flow field and the depiction of
its resulting movement. As such, it is a standard technique
for flow visualization in experimental flow analysis and in
the field of computational fluid dynamics (CFD). An addi-
tional approach to fluid flow analysis is the application of
virtual reality (VR) techniques and methodology [BL91].
In this paper we present a system for interactively seeding
and displaying stream tracers within immersive virtual en-
vironments. The extensive computational load is dealt with
by employing graphics processing units (GPUs) for particle
advection, data preparation for rendering, and rendering it-
self. For the latter we employ a high-quality, billboard-based
rendering approach called Virtual Tubelets [SKH∗05]. In or-
der to utilize the advantages of virtual environments over
desktop-based visualization systems, we implemented an in-
teraction mechanism with full six degrees-of-freedom, thus
alleviating problems caused by the mismatch between three-
dimensional data and two-dimensional input techniques.

† e-mail: {schirski, bischof, kuhlen}@rz.rwth-aachen.de

Due to the considerable processing power of modern pro-
grammable graphics hardware, a number of approaches for
leveraging this power have been introduced recently. Ap-
plications range from very graphics-centric uses like ray-
tracing to generalized numerical algorithms [OLG∗05]. Un-
like Krüger et al., who also employ particles for the explo-
ration of a given flow field [KKKW05], we concentrate on an
interactive high-quality visualization of particle traces, thus
increasing visual feedback of the underlying fluid flow.

Another option for reducing response times for an inter-
active flow exploration is the parallelization of the compu-
tation on a dedicated computer system (e.g. [GHW∗04]).
Although this approach results in significant speed-ups, it
is typically still lacking in terms of interactivity due to lag
induced by data management and network communication.
Alternatively, Kuester et al. [KBHJ01] precompute particle
traces and load them at run-time depending on user input in a
virtual environment, which requires considerable additional
computing and storage resources.

2. Overview
The major part of our system is executed on the graphics sub-
system of a given visualization computer. The main CPU is

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org


M. Schirski, C. Bischof & T. Kuhlen / GPU-based Stream Tracers in Virtual Environments

Figure 1: Four snapshots of evolving, GPU-based particle traces on a data set containing two interacting vortices. All opera-
tions, from particle tracing to path reconstruction to rendering, are executed on the GPU.

used only for the parametrization of the computation via user
interaction and for initiating the computation and rendering
process, resulting in an animated depiction of stream tracers
moving through the flow field. Instead of dealing with in-
stantaneous particle data, we concentrate on computing and
visualizing animated particle traces. This results in a more
coherent picture of the flow field due to prolonged display
not only of the current position of any given particle, but also
of its recent history. As a conventional, line-based depiction
of particle trajectories suffers from depth perception prob-
lems and depth order ambiguities, we use a billboard-based
approach for rendering, which creates the illusion of tubular
geometry. Orienting triangle strips towards the viewer, cap-
ping these strips to avoid visual artifacts, and faking illumi-
nation via normal mapping lead to a convincing simulation
of complex geometry at little computational cost.

Figure 2: A user interactively seeds particle traces in an
immersive virtual environment.

3. Interactive Seed Point Specification
Seed points are specified directly in the virtual environment
by means of a 6-DOF input device. The user just points at the

desired location and starts seeding particle traces by pushing
the device’s button. Similar to dye injectors from classical,
experimental flow visualization particle seeding continues
until the button is released. In contrast to classical flow visu-
alization, the user is able to move the bubbler around freely,
thus effectively "painting" particle tracers into the flow do-
main (see figure 2). Alternatively, automatic seeders can be
defined, which continuously release particles into the fluid
flow.

4. GPU-based Particle Advection
In order to perform interactive particle advection on a GPU,
a number of subtasks have to be accomplished. These in-
clude storing flow field and particle data in graphics mem-
ory, integrating the particles through the flow domain using
the programmable graphics pipeline, and inserting new, user-
defined particles into the particle population.

4.1. Data Storage
For now, we concentrate on the exploration of flow fields
defined on a cartesian grid and stored in a 3D floating point
texture, resulting in a direct mapping of texels to grid points.
Texture data consists of 4-tuples encoding flow velocity
along the three major axes and an additional scalar. Instead
of deriving the scalar attribute from the flow field on the fly,
we pre-calculate it and download it to the graphics system
along with the flow data itself. On the graphics system, tex-
ture data is stored in 4-component 3D textures with 16 bits
per channel. This allows for making use of the interpolation
capabilities of current graphics hardware.

Particle data is stored in 2D textures with a focus on pre-
serving the particles’ histories. A 4-component texture with
32bit floating point values is used for storing particle posi-
tions and the corresponding scalar attributes. In its simplest
form, every column contains a single particle path and every
row contains information about the whole particle popula-
tion for the corresponding instant in time (see figure 3).

c© The Eurographics Association 2006.



M. Schirski, C. Bischof & T. Kuhlen / GPU-based Stream Tracers in Virtual Environments

4.2. Integration
The movement of a particle is computed incrementally
through numerical integration with the fourth-order Runge-
Kutta method (RK4), which is independently executed for
every particle. As GPUs exhibit maximum performance for
uniform computations on a wide data stream, we rely on a
fixed step size.

Advancing the particle traces is a two step process. First,
the current particle positions are integrated through the flow
field using RK4, then the particle histories are preserved by
copying lines 0 to m− 2 of the source texture to lines 1 to
m−1 of the destination texture. For the next integration step,
source and destination textures are swapped.

4.3. Seeding
For every new particle to be injected into the flow domain,
its complete history has to be reset, i.e. a whole column in
the particle position texture has to be written to. The particle
positions in the column are set to the seed point for the new
particle by drawing a line primitive into the off-screen render
buffer associated with the particle texture. For seeding mul-
tiple new particles along a line, adjacent columns are written
to by rendering a single quad instead of multiple lines, which
results in a linear interpolation of the seeding positions for
the start and end points of the line.

5. High-Quality Rendering
The final rendering as billboarded geometry requires addi-
tional data to be generated. For the body of a single tubelet,
two vertices have to be sent to the graphics pipeline for every
particle position. In addition, two vertices have to be added
to the start and the end of the tubelet body for a believable
simulation of rounded ends. Furthermore, for every tubelet
four vertices have to be provided for its start and end caps
each (see figure 4).

DATA FOR ti

History
History
History

Flow Field

Current Positions

History

Current Positions

Copy

Integrate

DATA FOR ti-1

Pj, t i Pj+1, ti

Pj, ti-1 Pj+1, ti-1

Pj, ti-2 Pj+1, ti-2

Particle Pj

Particle Pj+1

Figure 3: Updating particle information stored in a 2D tex-
ture.

particle position

à tangent vector

à up vector

à direction to viewer

Figure 4: Anatomy of a Virtual Tubelet.

While current graphics hardware is capable of accessing
texture data in the vertex shader, its efficiency is rather lim-
ited in comparison to the direct rendering of vertex arrays,
especially when dealing with very uniform access patterns.
Thus, we expand the data into additional render targets be-
fore copying it into vertex arrays. The latter step is nec-
essary, as direct render-to-vertex-array functionality is only
supported through vendor-specific OpenGL extensions.

For all tubelet vertices, the positions of the correspond-
ing particles and the tubelet tangents are provided as vertex
position and texture coordinate arrays. This information is
augmented by offset information in order to distinguish be-
tween multiple vertices belonging to a single particle posi-
tion. For the tubelet bodies, vertex positions are generated
by "smearing" the particle positions over the corresponding
entries in the render target. Tangent vectors are computed
in a similar fashion, but instead of just copying particle in-
formation, the difference between two adjacent positions is
computed. While the positional data for the tubelet caps is
computed separately, directional and color information is
copied from the tubelet data into the caps’ respective ver-
tex attribute arrays. As the structure of the tubelet geometry
does not change, an index buffer is created and downloaded
to the graphics system only once. It defines triangle strips
forming the tubelets’ bodies from the aforementioned vertex
arrays and is reused for drawing every frame.

During rendering, the billboarded tubelet bodies are ori-
ented to face the viewer and a normal map is applied, which
emulates the rounded surface of a tube. Providing the frag-
ment shader with user and light positions allows for com-
puting per-pixel diffuse and specular illumination, which re-
sults in a convincing simulation of tubular geometry (see fig-
ure 1). This helps especially with reliably conceiving orien-
tation and depth order of the particle trajectories. In addi-
tion, even when stopping the animation, the flow structure
can easily be understood.

c© The Eurographics Association 2006.



M. Schirski, C. Bischof & T. Kuhlen / GPU-based Stream Tracers in Virtual Environments

Desktop Particle Count / History Length
Data set 256/256 512/256 512/512 1024/1024
DVortex 212 120 66 18
Engine 240 120 64 17
Engines 212 106 56 15
CAVE Particle Count / History Length
Data set 256/256 512/256 512/512 1024/1024
DVortex 146 85 48 12
Engine 150 89 49 12
Engines 133 80 43 10

Table 1: Timing results in frames-per-second on a desktop-
based system and in a cluster-driven virtual environment.

6. Results

On our test systems, we are able to provide a high-quality
depiction of interactively seeded stream tracers by shifting
the major workload onto the GPU. By displaying tracers in-
stead of instantaneous particle positions, an intuitive under-
standing of the underlying flow field is considerably facili-
tated, which is enhanced even further by stereoscopic, user-
centered projection. The interactive seeding of the particle
traces allows for an explorative analysis of the CFD simula-
tion results.

Table 1 shows the results of performance measurements
on two reference systems, a desktop system and a visualiza-
tion cluster driving a cuboid five-sided CAVE-like virtual en-
vironment. All systems are equipped with NVIDIA GeForce
6 graphics cards. Test data consists of a data set with two
interacting vortices, resampled into a cartesian grid of size
256×1282 and denoted as DVortex, and a data set with a time
step of an interior combustion engine simulation, resampled
to 1283. The latter includes the velocity magnitude as scalar
data. Measurements were taken with and without sampling
and visualizing the scalar data, denoted as Engines and En-
gine, respectively. The results of the performance measure-
ments are given in frames-per-second, as this is the crucial
factor, which determines usability for an interactive explo-
ration in an immersive environment.

As shown by the measurements, interactive frame rates
are maintained for quite large particle populations with a
long history. Even 1024 tracers with a history of 1024 steps
are handled quite well. However, for this extreme case the
frame rates are slightly too low for a comfortable exploration
within a virtual environment. Besides larger output resolu-
tions and overhead for communication and synchronization,
the main reason for reduced frame rates on the cluster nodes
are slightly less powerful graphics cards, i.e. GeForce 6800
GT compared to a GeForce 6800 Ultra in the desktop sys-
tem. Separate measurements indicate that a rather large part
of the computational load is taken up by tubelet reconstruc-
tion and rendering.

7. Conclusions and Future Work
In this paper, we presented a GPU-based approach for an in-
teractive specification and high-quality visualization of par-
ticle traces. Bringing it into an immersive virtual environ-
ment with 6-DOF user interfaces allows for an intuitive ex-
ploration of static flow fields. An improved impression of the
structure of the underlying flow field is conveyed especially
by the display of the particles’ histories. In combination with
a high-quality depiction as tubular geometry comprehension
problems and visual ambiguities are minimized.

An issue, that came up during the use of our method for
the exploration of non-enclosed flows, was that many par-
ticles left the flow domain quite quickly, leading to quite
a volatile visualization. The use of automated, user-placed
seeders remedies this problem. However, some kind of an-
notation system for marking promising seeding positions or
distinctive flow features would be useful.

Acknowledgements
The authors would like to thank the Institute of Aerodynam-
ics (AIA), RWTH Aachen University, for the engine and
dual vortex data sets kindly made available.

References
[BL91] BRYSON S., LEVIT C.: The virtual windtunnel:

an environment for the exploration of three-dimensional
unsteady flows. In VIS ’91: Proceedings of the 2nd con-
ference on Visualization ’91 (1991), IEEE Computer So-
ciety Press, pp. 17–24.

[GHW∗04] GERNDT A., HENTSCHEL B., WOLTER M.,
KUHLEN T., BISCHOF C.: VIRACOCHA: An Efficient
Parallelization Framework for Large-Scale CFD Post-
Processing in Virtual Environments. In Proceedings of
the IEEE SuperComputing (SC2004) (November 2004).

[KBHJ01] KUESTER F., BRUCKSCHEN R., HAMANN B.,
JOY K. I.: Visualization of particle traces in virtual en-
vironments. In VRST ’01: Proceedings of the ACM sym-
posium on Virtual reality software and technology (New
York, NY, USA, 2001), ACM Press, pp. 151–157.

[KKKW05] KRÜGER J., KIPFER P., KONDRATIEVA P.,
WESTERMANN R.: A Particle System for Interactive Vi-
sualization of 3D Flows. IEEE Transactions on Visualiza-
tion and Computer Graphics 11, 6 (2005).

[OLG∗05] OWENS J. D., LUEBKE D., GOVINDARAJU
N., HARRIS M., KRÜGER J., LEFOHN A. E., PURCELL
T. J.: A survey of general-purpose computation on graph-
ics hardware. In Eurographics 2005, State of the Art Re-
ports (August 2005), pp. 21–51.

[SKH∗05] SCHIRSKI M., KUHLEN T., HOPP M.,
ADOMEIT P., PISCHINGER S., BISCHOF C.: Virtual
Tubelets – efficiently visualizing large amounts of particle
trajectories. Computers & Graphics 29, 1 (2005), 17–27.

c© The Eurographics Association 2006.


