
EUROGRAPHICS 2006 / D. W. Fellner and C. Hansen Short Papers

Fast Skeletal Animation by skinned Arc-Spline based

Deformation

Sven Forstmann and Jun Ohya

GITS Faculty, Waseda University, Tokyo, Japan

Abstract

Presented is a novel skeletal animation system for providing high quality geometric deformations in real-time.

Each bone of the skeleton is therefore represented by a spline, rather than using conventional matrix rotation.

In our approach, each vertex of the animated character can be influenced by a maximum of three spline-curves,

which is sufficient for skinned animation. One spline is parameterized by three control points and a possible twist.

As opposed to conventional Bézier curves does our arc-spline rely on trigonometric functions for providing better

curvatures. The optimized implementation using the OpenGL-shading language shows very promising results for

real-time character animation, as even about 1 Million vertices were able to be transformed at interactive 43

frames per second on a GeForce 7800 GTX graphics card.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Splines,Hierarchy and

geometric transformations

1. Introduction

Animation methods have been of interest in the area of com-

puter graphics almost since the beginning, and many differ-

ent methods evolved to cover the required deformation issue.

The most popular in this area can be generally categorized

in skinned skeletal animation, free-form deformation (FFD)

and deformation along spline curves. Alternative methods,

such as [RS05], [YL05] and [KZ05] allow an easy handling

of deformation as they analyze the mesh structure first, but

they can not provide real-time performance due to their high

complexity.

In case of the basic skinned animation, multiple bones

(each of them represented by one transformation matrix) can

influence one vertex. This method is the fastest for achiev-

ing non-rigid animation and the most common in interac-

tive applications. However, it has some major drawbacks for

large scale deformations, as can be seen in Fig.1. In case

of FFD, introduced by Sederberg and Parry [TS86], usu-

ally a low-resolution control lattice is used to deform the

contained geometry. It has recently become quite popular

for real-time usage in combination with physical simulation

as in [MM05], [SC02] and [Ull04]. FFD is suited well for

operating on underlying nurbs surfaces, as the sharp lattice

boundaries do not affect the created triangles directly. How-

ever, in real-time, where mostly triangles are used, this will

lead to sharp edges where smooth ones are desired (Fig.1).

An approach to overcome this situation is the method of

S.Capell [SC02], where skinning was used to create smooth

transitions near such boundaries. However, to provide high

quality twist operations, the lattice would have to have ei-

ther a very high resolution, or to be subdivided dynamically

in order to prevent self-penetration.

We therefore have decided to use a method introduced

by K.Singh [KS98], where the animation is driven by spline

deformations, since it delivers highest possible quality (see

Fig.1) as well as real-time performance. Unlike the more

flexible approach of Singh, who applies a spline curvature

driven rotation per vertex, we will exploit the spline’s Frenet

Frames, which can be calculated much faster. As graphics

hardware has evolved quickly, it has become possible to shift

the complete deformation part to the GPU, giving the CPU

more space for other tasks. Due to the GPU’s vector ori-

ented design, we are able evaluate three spline deformations

almost parallel, resulting in a very efficient computation.

c© The Eurographics Association 2006.

http://www.eg.org
http://diglib.eg.org


S. Forstmann & J. Ohya / Fast Skeletal Animation by spline based deformation

Advantages of our approach are that singularities occur-

ring in matrix skinning can be avoided and computationally

expensive multi-segment bones for simulating a smooth de-

formation become obsolete. They are also impractical for

real-time due to the large amount of intermediate matrices

that are necessary at each segment. Furthermore, with only

three control points and a twist operation, the range of natu-

rally expressible postures is quite large.

Figure 1: Here a sample showing the most common defor-

mation methods. As for FFD, 7 segments were used.

2. Spline Functions

Figure 2: Here a comparison between an arc-spline and a

Bézier-curve. Note the different circle-shapes, approximated

by four splines segments each

For deciding which type of spline function to choose, two

candidates were available: the quadratic Bézier curve and

the trigonometric arc-curve, shown in Fig.2. Both curves

are bound to three control points, the minimum to define a

spline, which is important for high performance.

By comparing the two circles in Fig.2, we can see that the

arc-spline provides a natural circle while the Bézier spline’s

circle is not completely round shaped.

In the following, both curves formulas fa and fb with

derivations f ′a and f ′b are defined. The input for both for-

mulas are three three-dimensional control vertices p1,2,3, the

difference vectors ∆12 and ∆23 as well as the variable x. Note

that the range of x is depending on the applied function.

∆12 = p2 − p1

∆23 = p3 − p2

Arc curve:

∀x ∈ [0..π/2]
fa(x) = p1 +∆12 · sin(x)+∆23 · (1− cos(x))
f ′a(x) = ∆12 · cos(x)+∆23 · sin(x)

Quadratic Bézier curve:

∀x ∈ [0..1]

fb(x) = p1 · (1− x)2 + p2 · (2 · x · (1− x))+ p3 · x
2

f ′b(x) = p1 ·2 · (x−1)+ p2 · (2−4x)+ p3 ·2 · x

Regarding both formulas, we see that the arc-spline re-

quires much less operations than common Bézier; also can

sin and cos be reused in the arc-splines derivative, which is

very advantageous for our desired GPU implementation.

3. Spline coordinate-system

Figure 3: The spline coordinate system.

In order to deform geometry, we are required to create a

complete coordinate system around the spline, the so called

Frenet Frame, consisting of three basis vectors in each posi-

tion of the curve. We therefore pre-calculate a general nor-

mal vector bN that is orthogonal to ∆12 and ∆23 and not de-

pending on x as first basis vector. Our second basis vector,

the tangent bT , is equal to the derivative of the spline func-

tion fa. As for the last vector, the binormal bB, we can sim-

ply use the cross-product of bN and bT . The origin bO of the

coordinate system is given by our initial curve function fa.

∀x ∈ [0..π/2]
bT (x) = f ′a(x)
bN = ∆12 ×∆23

bB(x) = bN ×bT (x)
bO(x) = fa(x)

In Fig.3, we can see such a generated coordinate system

with normalized basis vectors. The basis normals and shown

in red, tangents in green and binormals in blue.

c© The Eurographics Association 2006.



S. Forstmann & J. Ohya / Fast Skeletal Animation by spline based deformation

4. Bind-pose computation

Figure 4: Space partitioning for the binding process.

In order to calculate the bind pose, each vertex of the input

geometry has to be mapped to a position x on the curve. As

this might lead to ambiguities, we decided to use a recursive

divide and conquer approach, shown in Fig.4. In the first it-

eration we start by splitting the space in 2 partitions (green

and blue inside the figure) at spline position x = π/4. By

subdividing further, we can exactly determine the position x

on the curve together with the relative coordinate position in

spline space based on bN ,bT ,bB and bO.

5. Spline Mixing

Figure 5: Spline-Skinning: Red,green and blue are repre-

senting the weights for the body, the arm and the elbow-

spline respectively.

To achieve a useful result in character-animation, it is

necessary to let each vertex of the geometry be influ-

enced weighted by multiple deformations. For assigning the

weights per vertex, we chose to use the conventional way

by painting the weights on the geometry similar to a texture

map. This method has already proven its effectiveness in var-

ious 3D authoring tools. An example can be seen in Fig.5,

where each of the colors red,green and blue is assigned to a

rigged body part. In overlapping areas the weights are mixed,

resulting in colorful transitions.

In our implementation, up to three spline outputs

(v1,v2,v3) are allowed to influence a single vertex vresult as

we have to regard the speed constraint. The three weights

w1,2,3 for each vertex have to sum up to 1. More specific can

we write as following:

∀w1,2,3 ∈ [0..1]
w1 +w2 +w3 = 1

vresult = v1 ∗w1 + v2 ∗w2 + v3 ∗w3

6. Shader Optimization

As the GPU built-in vector operations are very efficient for

evaluating multiple operations at the same time, we can cal-

culate three splines almost parallel. This results in a speed-

up of about twice compared to the serial version. For the im-

plemented version, also additional rotation around the spline

axis was added to provide the twist operation.

For combining the three results v1, v2 and v3 to vresult , we

had to modify the mixing-formula, as the floating-point ac-

curacy was not sufficient. In the modified version, we first

evaluate the average vmiddle together with the three differ-

ence vectors ∆v1,2,3 before blending them together to the

precise final vertex position vresult .

vmiddle = (v1 + v2 + v3)/3

∆v1,2,3 = v1,2,3 − vmiddle

vresult = vmiddle +∆v1 ∗w1 +∆v2 ∗w2 +∆v3 ∗w3

The data that is stored per vertex are three bind-poses and

three weights. The spline parameters can be set as vertex

program variables and do not need to be stored per vertex.

The handling of the vertices normal, binormal and tangent-

vectors is a little bit complicated. If all of them are desired,

it is recommended to store them in a RGB texture, which

can be accessed by the vertex shader on any newer graph-

ics hardware. Each directional vector (normal, binormal and

tangent) would occupy one pixel inside the texture. In case

that the spline is a straight untwisted line during the binding

process, it is not necessary to store binding information; one

transform matrix per spline is sufficient as the spline-space

is linear.

7. Results

For the results, we created various poses to show the flexi-

bility of our approach. In Fig.6, three poses are shown. The

bind pose (up), a basic bend deformation (middle) and a

combination of bending and twisting (bottom). The under-

lying skeleton was defined rigid by attaching the arm-spline

to the upper control point of the body-spline and the elbow-

spline to the right control point of the arm-spline (Fig.5). As

for the pose in the middle of Fig.6, even the large scale defor-

mation near the shoulder does not result in self-penetration.

All three poses show correct, seamless transitions between

deformed and undeformed areas.

In terms of hardware transformation speed, we tested our

method by rendering large amounts of models in varying

poses. Test system has been a Pentium IV 3.4Ghz with a

c© The Eurographics Association 2006.



S. Forstmann & J. Ohya / Fast Skeletal Animation by spline based deformation

Figure 6: Three poses: The binding pose (up), simple bend

operation (middle) and finally bending combined with two

twist operations, for the hand and for the body (bottom).

GeForce 7800 GTX graphics card. The results are presented

in Fig.7. Despite complex calculations it is still possible to

show a very competitive performance. With our implemen-

tation it is possible to transform 1 Million vertices in about

23 Milliseconds, corresponding to 43 frames per second.

This result was achieved by an implementation that stores

the binding data as three texture coordinates per vertex. In

a second test implementation where normals were trans-

formed as well, the speed decreased by about 25%. However,

we believe that a better performance can be achieved by the

suggested texture approach as it can save a lot of memory

bandwidth.

Figure 7: Performance benchmark on a GeForce 7800 GTX

graphics card, based on rendering the body-arm model of

Fig.6 (12864 vertices) multiple times.

8. Conclusion

We have presented an efficient implementation to achieve

high quality skeletal animation in real-time, based on

weighted spline-aligned deformation. In contrast to conven-

tional matrix rotation, collapsing geometry in case of large-

scale deformations can be avoided and joints can be adjusted

more accurately due to additional control points. Our results

prove that recent graphics hardware is already able to han-

dle complex spline deformations in real-time; moreover can

the achieved results show a very competitive performance

which makes our approach feasible for many interactive ap-

plications.

Acknowledgements

We would like to say special thanks to Ryan McDougall for

his editorial help in the final stages of the paper.

References

[KS98] K. SINGH E. F.: Wires: A geometric deformation

technique. In SIGGRAPH ’98 (1998).

[KZ05] K. ZHOU J. H.: Large mesh deformation using the

volumetric graph laplacian. In SIGGRAPH ’05 (2005).

[MM05] M. MUELLER B. H.: Meshless deformations

based on shape matching. In SIGGRAPH ’05 (2005).

[RS05] R. SUMNER M. Z.: Linear rotation-invariant co-

ordinates for meshes. In SIGGRAPH ’05 (2005).

[SC02] S. CAPELL S. G.: Interactive skeleton-driven dy-

namic deformations. In SIGGRAPH ’02 (2002).

[TS86] T. SEDERBERG S. P.: Free-form deformation of

solid geometric models. In SIGGRAPH ’86 (1986).

[Ull04] ULLER M.: Interactive virtual materials. In CI’04

(2004).

[YL05] Y. LIPMAN O.: Mesh-based inverse kinematics.

In SIGGRAPH ’05 (2005).

c© The Eurographics Association 2006.


