
EUROGRAPHICS 2005 / J. Dingliana and F. Ganovelli Short Presentations

Scalar Tagged PN Triangles

Tamy Boubekeur+ Patrick Reuter∗ Christophe Schlick+

+: LaBRI INRIA CNRS University of Bordeaux ∗:LIPSI ESTIA

Abstract
This paper presents a new technique to convert a coarse polygonal geometric model into a smooth surface inter-
polating the mesh vertices, by improving the principle proposed by Vlachos et al. in their "Curved PN-Triangles".
The key idea is to assign to each mesh vertex, a set of three scalar tags that act as shape controllers. These scalar
tags (called sharpness, bias, and tension) are used to compute a procedural displacement map that enriches the
geometry, and a procedural normal map that enriches the shading. The resulting technique offers two majors fea-
tures: first, it can be applied on meshes of arbitrary topology while always generating surfaces with consistent
behaviors across edge and vertex boundaries, second, it only involves operations that are purely local to each
polygon, which means that it is very well suited for hardware implementations.

1. Introduction
Compared to other subdivision schemes [ZS00] or mesh
smoothing techniques, Curved PN-Triangles, a totally local
refinement scheme introduced by Vlachos et al. [VPBM01],
is much better suited to hardware implementation, since no
adjacency information between triangles has to be stored
and managed. So, starting from a coarse mesh defined by
the user, an interpolating refined mesh can be generated on-
the-fly at rendering time. The most innovative idea of PN-
Triangles, compared to previous work, is to relax the con-
straint of high-order geometric continuity, and to show that
a simple visual smoothness is sufficient for many applica-
tions. This visual smoothness is obtained by computing, si-
multaneously but independently, a displacement field used to
enrich the geometry of each triangle, and a procedural nor-
mal field used to enrich its shading. In order to offer a greater
control on the initial coarse mesh, this paper proposes to as-
sign to each vertex of this coarse mesh, a set of three scalar
tags that act as intuitive shape controllers, namely sharpness,
tension and bias. The area of influence of these shape con-
trollers is very local but is sufficient to guarantee consistent
local surface features, such as curvature values around ver-
tices or tangent plane discontinuities across edges.

2. Description of Scalar Tags
2.1. Local surface analysis
Indexed faces sets have become the most common data
structure to store polygonal meshes, as it avoids the dupli-
cation of the vertex coordinates. But it has also one major
consequence: the only adjacency relationship stored in the
data structure are the indices of common vertices shared by

two neighboring polygons. Thus the only way to get a con-
sistent behavior of the surface across polygon boundaries is
to store the shape parameters on a per vertex basis and to en-
sure that the influence of all the shape parameters is strongly
localized around each vertex.

Unfortunately, if a per-vertex storage is well-adapted to
per-vertex shape parameters such as local tangent plane or
local curvature, it is much less adapted to per-edge features
that may exist in the geometry, such as creases or straight
lines. So, to be able to correctly account for per-edge fea-
tures, we impose some constraints on the one-ring neigh-
borhood of each vertex. Let us consider Figure 1: a crease
passes through the vertex O and cuts the underlying triangle
fan in two sub-fans. An average normal vector N+ and N−

can be computed for each sub-fan, by simply averaging the
normal vectors of the included triangles. The sharp crease
is then implicitly defined by the three tagged vertices A, O
and B. The corresponding normal discontinuity can be sim-
ply encoded, by applying a kind of Haar filtering on the two
normal vectors N+ and N−: we store the average normal
vector N = N+ + N− (which is normalized to unit length)
and a difference vector ∆ = N+−N−. So ∆ = 0 corresponds
to a smooth vertex. In the remainder of the paper, we will use
the word “tagged” to specify a vertex with a non-null ∆ and
the word “untagged” otherwise. To be able to always keep
a local decision about per-edge features, we impose the fol-
lowing restriction on the local configuration:
1. A tagged vertex can have 2 tagged neighbors at most.
2. A triangle can have 2 tagged vertices at most.
The first restriction ensures that only one crease passes
through a given vertex. If not, this would mean that we need
more than one vector ∆ to encode the normal discontinuity

c© The Eurographics Association 2005.

http://www.eg.org
http://diglib.eg.org


Tamy Boubekeur+ Patrick Reuter∗ Christophe Schlick+ / Scalar Tagged PN Triangles

O

N

A

B

∆
+N

N−

(a) (b)

Figure 1: (a) At the vertex level, the green sharp crease
can be encoded by a simple vector ∆. (b) This additional
per-vertex data locally controls the underlaying per-triangle
smooth surface generation.

at this vertex. As an extension, encoding several vectors ∆
would allow to represent multiple sharp creases, but at the
price of a more important per-vertex data set. The second
restriction make unambiguous the difference between two
distinct creases that are separated by only one triangle, and
a crease that loops around a single triangle. Note that some
simple local remeshing step can remove this limitation (split
for instance).

2.2. Shape parameters through scalar tags
Compared to the original PN-Triangle model, the inclusion
of the normal discontinuity vector ∆ allows us to generate
different displacement fields and normal fields on both sides
of a crease edge. We propose now to define additional per-
vertex scalar values (i.e. scalar tags) to offer an even more
accurate control of the local geometry. We have selected
three shape parameters that are particulary well adapted to
the control of sharp creases. We first describe these three
shape parameters independently of the underlying refine-
ment technique.

The first scalar tag σ ∈ [0,∞) is called sharpness: it de-
fines the divergence of normal vectors across the two sides of
the crease, by interpolating between totally smooth (σ = 0)
and totally sharp (σ = ∞) configurations (see Figure 2(a)).

The second scalar tag θ ∈ [−1,1] is called tension: it cor-
responds to the usual tension parameter that has been defined
in the spline literature [BB83, Far01]. It is used to locally
control the curvature of all Bézier boundary curves that are
starting from on a given tagged vertex (see Figure 2(b)), and
allows to interpolate between three different configurations:
tensed Bézier (θ > 0), standard Bézier (θ = 0) and relaxed
Bézier (θ < 0).

The third scalar tag β ∈ [−1,1] is called bias: it also cor-
responds to the usual bias parameter that has been defined in
the spline literature [BB83, Far01]. It is used to locally con-
trol the direction of all Bézier boundary curves that are start-
ing from a given tagged vertex (see Figure 2(c)). Here again
three different configurations are interpolated: bias toward
N+ (β > 0), no bias (β = 0) and bias toward N− (β < 0).

O

N+N−

σ∆

O

N+N−

σ∆

(a) Sharpness

N+N− N+N−

O O

(b) Tension

O

N−

σ∆

N+

N+

N− σ∆

O

(c) Bias

Figure 2: The role of scalar tags. (a) Sharpness σ con-
trols the normal deviation on sharp creases. (b) Tension
θ controls the curvature of boundary curves in the vertex
neighborhood. (c) Bias β controls the direction of boundary
curves in the vertex neighborhood.

These three scalar tags are used as shape controllers and
they completely drive the mesh refinement. Our experiments
have shown that these values, defined by the user, are very
intuitive and predictable, even for users not familiar with ge-
ometric modeling softwares.

To sum up, an enriched coarse mesh (ST Mesh in the re-
mainder) can be defined by using a set of two tables V and
T . Each line of table V stores all the data relative to a ver-
tex: the position P, the average normal vector N, the normal
discontinuity vector ∆, and the three scalar tags σ, θ, and β.
Similarly, each line of table T stores only the three vertex
indices (i, j,k) relative to a triangle.

3. Mesh generation
3.1. Combining shading and smoothing
As said above, our technique is strongly based on the PN-
triangles presented by Vlachos et al. The reader unfamiliar
with this work may refer to [VPBM01] for details on the
construction of PN-triangles.

In order to obtain a coherent effect of the shape parame-
ters defined above, their influence has to be accounted both
for the shading and the geometry of the surface generated
during the rendering process. As shown in Figure 3, in the
case of a sharp crease, this approach ensures a coherent be-
havior, both on the silhouette and at the interior of the object.

(a) (b) (c) (d)

Figure 3: (a) Coarse mesh with a ring of vertices tagged
as sharp (σ = 0.7). (b) Result obtained with standard PN-
Triangles. (c) Result with sharpness only in shading. (d) Re-
sult with sharpness both in shading and geometry.

The shape factors described in the previous section can
now be used to efficiently generate a surface with sharp fea-
tures. Globally, we can make a distinction between:

c© The Eurographics Association 2005.



Tamy Boubekeur+ Patrick Reuter∗ Christophe Schlick+ / Scalar Tagged PN Triangles

• the sharpness value σ which mainly acts on the shading,
• the bias β and the tension θ which mainly act on the sil-

houette of the object, and so on the underlying geometry.

We propose to generate a coherent shading for ST-Meshes
with a procedural normal map constructed with the modified
normals, and a smoothing algorithm for the geometry that
can be formulated as a procedural displacement map. Both
of them are computed with one triangular Bézier patch, sim-
ilarly to PN-Triangles. The combination of these two pro-
cedural maps produces a realtime piecewise smooth visual-
ization that is accurately controlled by the simple per-vertex
scalar tags of the ST-Mesh.

3.2. Generation of the normal field
The normal field constructed across a triangle has to be
smooth in the interior of the triangle, continuous across an
untagged edge (i.e. without normal discontinuity) and con-
sistent to the discontinuity encoded by the σ values of tagged
vertices.

To account for tagged vertices, the three original normal
vectors are modified in the following way: since ∆i repre-
sents the direction of the discontinuity at vertex i, we define
N ′+

i (resp. N ′−

i ), by N′+
i = (Ni +σi∆i)/‖(Ni +σi∆i)‖ (resp.

N ′−

i = (Ni − σi∆i)/‖(Ni − σi∆i)‖). The choice of N ′+
i or

N ′−

i is made according to the classification of the triangle
against the triangle-fan split introduced by a sharp crease
(see Figure 1). A linear or quadratic (Bézier) interpolation
between these normales can produce a visual smoothness
over the refined mesh [VPBM01]. In the remainder of the
paper, we will note N ′

i , the normal of the current side of a
crease for vertex i.

3.3. Generation of the displacement field
As proposed by Vlachos et al., the displacement field will
be computed by defining a triangular Bézier patch. But the
shape modifications generated by the scalar tags at each ver-
tex have to be accounted for, when generating the displace-
ment field, so the process has to be slightly modified.

A set of 10 Bézier control points have to be computed to
define a cubic triangular patch (see Figure 4), to define the
displacement field b(u,v):

b(u,v) = b300w3 +b030u3 +b003v3

+3b210w2u+3b120wu2 +3b201w2v
+3b021u2v+3b102wv2 +3b012uv2

+6b111wuv

(1)

To simplify the upcoming notations, we propose to de-
compose each control point as:

bi = di + ei (2)

where di corresponds to the position of the control point
when the patch is in a flat configuration (i.e. all control points
are lying in the plane) and ei is the displacement vector when

di is projected onto the plane defined by the normal and the
position of the closest vertex. As in [VPBM01], we classify
the control points into 3 main categories:

• vertex coefficients: b300, b030, b003
• tangent coefficients: b210, b120, b021, b012, b102, b201,
• center coefficients: b111 is procedurally obtained by the

formulation proposed by Farin to ensure quadratic preci-
sion [Far01].

b300

b030

b003

b012

b021

b201

b102

b
b210

V1

V2

V3

d210

120210e

Figure 4: A cubic triangular Bézier patch. Each control
point can be decomposed in a parameter position di and a
displacement ei.

The scalar tags should neither affect the vertex coefficients
(as we always want an interpolating surface) nor the center
coefficient (as Farin’s formulation always maintains a nice
shape for the interior of the patch). So, we propose to reduce
the geometric expression of the scalar tags only through the
tangent coefficients. Moreover, to preserve coherence across
triangle boundaries, the scalar tags carried by a vertex will
only affect the two nearest tangent coefficients. For example,
the scalar tags of V1 will only affect the coefficients b210 and
b201.

In the remainder of this section, we consider the case of
a coefficient bi, which is computed using the scalar tags of
V j = (Pj,N j,∆ j,σ j,θ j,β j), and the position of the opposite
edge vertex Pk. We have also to determinate whether the co-
efficient is on a sharp edge or not. For this, we use a predicate
δi which is true if the two relative edge vertices are tagged.

Let Π(p,n,q) = −n.(q− p) be the signed distance oper-
ator of projection of q onto the plane defined by the point p
and the normal n. We can write the Equation 2 as:

bi = di +Π(Pj,N j,di)N j

with di = Pj +(Pk −Pj)/3.

For instance, with the coefficient b210 of Figure 4, we have
j = 1 and k = 2; δ210 will be true if V1 and V2 are tagged,
false otherwise. The formulation of this coefficient becomes:

b210 = d210 +Π(P1,N1,d210)N1

with d210 = P1 + (P2 −P1)/3. Let us now describe how to

c© The Eurographics Association 2005.



Tamy Boubekeur+ Patrick Reuter∗ Christophe Schlick+ / Scalar Tagged PN Triangles

modify the geometric definition for a tangent coefficient bi
associated with a tagged vertex V j .

(a) (b) (c) (d) (e) (f)

Figure 5: Transmission of the scalar tags of two vertices
to adjacent Bézier patches. (a) σ = 0.2, θ = 0, β = 0 (b)
σ = 1, θ = 0, β = 0 (c) σ = 0.2, θ = 0.2, β = 0 (d) σ = 0.2,
θ = −0.6, β = 0 (e) σ = 0.2, θ = 0, β = −1, (f) σ = 0.2,
θ = 0, β = 1

Sharpness: To get a consistent silhouette for the refined
surface, we have to transmit the sharpness value σ of a vertex
to its relative tangent coefficients. This means that bi has
to express the “flatness” of the Bézier patch near the sharp
crease (see Figure 5(a) and 5(b)), which is actually the only
important aspect for its perception. So, we just have to act on
the projection, by constraining bi to the plane of the “sharp”
normal, according to σ, with the following formulation:

ei = (1−δi)Π(Pj,X j,di)X j with X j =
(1−σ j)N j +σ jN′

j
‖(1−σ j)N j +σ jN′

j‖

If σ j = 0 we are in the “smooth” case. Otherwise, the mod-
ified normal will flatten the patch near the tagged edge by
reducing the elevation produced by ei.

Tension: As usual in tensed Bézier splines, the tension
around a vertex V j will be controlled by the distance between
its associated tangent coefficients bi and its position Pj (see
Figure 5(c) and 5(d)). With our formulation, this leads to
simply translate di before evaluating the projection ei. We
want the tension to be maximal when di = Pj , so the tangent
coefficient will simply be computed by:

di = Pj +
(1−θ j)

3 (Pk −Pj)

Bias: The bias factor is independent of the crease side:
two triangles sharing a common vertex V j of a sharp crease
have to conform their Bézier patches in the same direction,
defined by the ∆ j (see Figure 5(e) and 5(f)). This time, we
want the bias to be expressed only for sharp edges, and we
propose to act again on ei, by using a projection direction
that directly takes into account ∆ j . We obtain:

ei = δiΠ(Pj,N j,di)Y j with Y j =
N j +β j∆ j

‖N j +β j∆ j‖

By stitching all together, we obtain the following final for-
mulation for the tangent coefficients:

bi = di + ei
di = Pj +

(1−θ j)
3 (Pk −Pj)

ei = (1−δi)Π(Pj,X j,di)X j +δiΠ(Pj,N j,di)Y j

(3)

The remainder of the process is totally similar to the one
used with PN-triangles: the 10 Bézier control points do to-
tally define the continuous displacement field. This field, and
the associated normal field, can thus be sampled at a given
resolution, to obtain a refined set of triangles that can be
sent to the rendering pipeline, or directly used by the GPU
with the generic mesh refinement technique of Boubekeur
and Schlick [BS05].

Figure 6: Original meshes (left) and realtime refinement
(right) expressing the scalar tag configuration.

4. Conclusion and future work
In this paper, we have shown how to easily control some use-
ful local surface properties through a reduced set of scalar
shape parameters encoded in a per-vertex basis. This work
enriches the original PN-Triangle model, and allows the user
to design more complex shapes at a coarse level that will be
dynamically refined preserving this shape parameters, which
is an interesting property for real-time applications and com-
pression. A first solution for expressing locally sharp edges
has been proposed, and our future work will be to investi-
gate the case of multiple sharp edges meeting in the same
vertices, and how to locally and efficiently encode this kind
of features.
References
[BB83] Brian Barsky and John Beatty. Local control of bias

and tension in beta-splines. Proc. ACM SIGGRAPH,
1983. 2

[BS05] Tamy Boubekeur and Christophe Schlick. Generic
mesh refinement on gpu. In Proceedings of SIG-
GRAPH/Eurographics Graphics Hardware, 2005. 4

[Far01] Gerald Farin. Curves and Surfaces for CAGD (Fifth
Edition). Morgan Kaufman Inc., 2001. 2, 3

[VPBM01] Alex Vlachos, Jorg Peters, Chas Boyd, and Jason
Mitchell. Curved PN triangles. Proc. ACM I3D, 2001.
1, 2, 3

[ZS00] Denis Zorin and Peter Schröder. Subdivision for mod-
eling and animation. ACM SIGGRAPH Courses Notes,
2000. 1

c© The Eurographics Association 2005.


