
In real-world scenarios, it is common to have only a few views of an object
available for 3D reconstruction. This issue is particularly daunting due to its ill-
posed nature, compounded by the fact that certain portions of the 3D model
may not be captured in the available input images. Consequently, there is a
critical need for techniques capable of accurately inferring or "hallucinating"
the unseen aspects of an object's shape and texture in a manner that remains
consistent with the observed views.

The core methodology of F2F is depicted in the figure above, illustrating the process from input
images to the final 3D reconstruction.

• Poses estimation and Feature volume construction

We use PoseDiffusion model [5] to estimate camera poses from sparse views, then we construct

a feature volume on a deformable tetrahedral grid by projecting 2D features extracted with

Dinov2 [4] onto it, forming the basis for geometry reasoning.

• Latent vector and Prediction

For each vertex v in tetrahedral grid, we create a latent vector z(v) as a concatenation of:

• a global semantic shape embedding derived from CLIP embeddings

• a local semantic shape embedding from the feature volume at vertex v

• a positional encoding used to capture the spatial features of each vertex v

We predict signed distance function (SDF) value s(v) and deformation vector δ(v) using MLP:

{s(v),δ(v)} = MLP(z(v))

• Surface Extraction and Optimization

With {s(v),δ(v)} predicted, we extract triangular mesh using marching tetrahedra. Then we

predict a 2D texture map by using a second MLP. To directly optimize the surface mesh, we

render multi-view images of predicted mesh, and define several losses:

Photometric loss : computing L2 loss to compare predicted images to ground truth images as

𝐿𝑟𝑔𝑏 = 𝐼 − መ𝐼
2

and 𝐿𝑚𝑎𝑠𝑘 = 𝑀 − 𝑀
2

Semantic Shape Consistency loss : computing L2 loss to compare predicted images CLIP

embeddings to the global CLIP embeddings as 𝐿ss𝑐 = ⅇ𝑚𝑏ⅇ𝑑( መ𝐼𝑛𝑜𝑣𝑒𝑙) −ⅇ𝑚𝑏ⅇ𝑑(𝐼)
2

Regularization loss : Applied to vertex deformation to avoid artefacts.

Total loss is weighted combination of these losses: 𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑟𝑔𝑏𝑙𝑟𝑔𝑏 + 𝜆𝑚𝑎𝑠𝑘𝐿𝑚𝑎𝑠𝑘 +

𝜆𝑠𝑠𝑐𝐿𝑠𝑠𝑐 + 𝜆𝛾𝑒𝑔𝐿𝑟𝑒𝑔
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PROBLEM METHODOLOGY

Several approaches have been proposed:

• Surface based methods: leveraging the deformation of template shapes

(spheres, cuboids, etc.) through differentiable rendering to align each input

viewpoint with its corresponding rendering views [7].

• Implicit-based methods: optimize a signed distance function (SDF) as in [2]

and [1], or a neural radiance field [6] using volumetric rendering [3].

Limitations: Surface-based methods require fixed topology, hindering

arbitrary 3D model reconstruction while Implicit-based methods optimize

only implicit forms, necessitating postprocessing (e.g. marching cubes) for

mesh extraction, introducing potential errors and low resolution. Both

approaches require accurate camera poses,
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RESULTS
We test our method on synthetic dataset. For each object, we render from 6
to 10 synthetic 2D views with predefined camera poses. Then we use these
set of sparse views to reconstruct 3D models. We mainly observe that F2F
generates triangular meshes with arbitrary topologies.

In conclusion, we aim to propose a method for high-resolution 3D
reconstruction from sparse views, addressing the complexities of unknown
camera poses and arbitrary topologies. Through a hybrid representation and
surface-focused optimization, we demonstrate that our pipeline effectively
produces 3D models from a few 2D synthetic data with known poses. In
future work, we will extend testing to more extensive datasets, incorporating
real-world data without predefined poses, and explore how semantic shape
consistency can further enhance neural network-based 3D reconstruction.

We introduce our method ‘F2F’ (Few to Full) to directly optimize a surface
representation, giving sparse object views without the constraints of topology
and camera poses. F2F employs a hybrid approach, optimizing both implicit
and explicit representations through a unique pipeline involving a pretrained
diffusion model for pose estimation, a deformable tetrahedra grid for feature
volume construction, and an MLP (neural network) for surface optimization.
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