
The half-edge data structure allows efficient execution of local modifications, geometric
information of a neighborhood of an edge is encapsulated into half-edges. Half-edges
store references for their start vertex, the opposite and the next half-edge, and the face
with which the half-edge associated. Vertices and faces store references one of their
half-edges.

[1] Baumgart, B. G.: A polyhedron representation for computer vision. In Proceedings of the May 19-22, 1975, National Computer
Conference and Exposition (AFIPS '75). Association for Computing Machinery, New York, USA, 1975, 589 – 596.
[2] Belyaev, A.; Ohtake, Y.: A comparison of mesh smoothing methods, Israel-Korea Bi-National Conference on Geometric Modeling and
Computer Graphics, Tel Aviv University, 83 – 87, 2003.
[3] Campagna, S.; Kobbelt, L.; Seidel H.-P.: Directed edges – A scalable representation for triangle meshes. Journal of Graphics, GPU & Game
Tools, 3, 1998, 1 – 11.
[4] Guibas, L.; Stolfi, J.: Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams, ACM Transactions
on Graphics, 4(2), 1985, 74 – 123.
[5] Loop, C. T.: Smooth Subdivision Surfaces based on Triangles, M.S. Mathematics thesis, University of Utah, USA, 1987.
[6] Müller, D. E.; Preparata, F. P.: Finding the intersection of two convex polyhedra, Theoretical Computer Science, 7(2), 1978, 217 – 236.
[7] Piker, D.; Pearson, W.: Plankton, GitHub, https://github.com/meshmash/Plankton, accessed 1 March 2024.
[8] Tobler, R. F.; Maierhofer, S.: A Mesh Data Structure for Rendering and Subdivision. In Proceedings of the January 30-February 3, 2006,
Winter School of Computer Graphics (WSCG’2006), Plzen, Czech Republic, 2006.
[9] Unity Real-Time Development Platform, https://unity.com/, accessed 1 March 2024.

LOGO

#1

PROBLEM COMPARISON OF DATA STRUCTURES

By global operations, we mean operations that extend to a large part of the
mesh, so the number of triangles/vertices traversed due to the operation is
comparable to the number of triangles/vertices in the entire mesh. Some
examples of global operations are the followings.

GLOBAL OPERATIONS

RESULTS

In our experiments we used a half-edge data structure [7], and we
implemented our proposed data structure in C# language using Unity game
engine [9]. We have done several tests to measure time cost of some local
and global operations. We compared the performance of the data structures
for some complex operations as smoothing and subdivision. Our results
confirmed, that many local and global operations can be easily implemented
and efficiently performed without explicit representation of edges. Moreover,
our surface representation stores less data than the half-edge data structure.

We give two representative examples, the application of the Laplacian
smoothing filter [2] and the Loop subdivision scheme [5]. Laplacian filtering is
a global operation, where we iteratively reposition each vertex to the center
of gravity of its neighbours. Loop subdivision is another global operation
working on polyhedrons defined by triangular faces. The subdivision
operation is not trivial; we need to break down each face of the polyhedron
and compute the coordinates of each vertex (new and old). By calculation of
vertex positions the edge-adjacent triangle pairs play an important role,
therefore the half-edge data structure is often chosen for implementing this
subdivision scheme.

REFERENCESAFFILIATIONS

TOPOLOGICAL DATA STRUCTURE FOR
COMPUTER GRAPHICS

Gábor Fábián
ELTE Eötvös Loránd University, Budapest, Hungary

LOGO

#2

LOGO

#3

Supported by the ÚNKP-23-4 New National Excellence Program of

the Ministry for Culture and Innovation from the source of the

National Research, Development and Innovation Fund.GO #4

This research is motivated by the following well-known contradiction. In
computer-aided design or modeling tasks, we generally represent surfaces
using edge-based data structures as winged edge [1], half-edge [3, 6], or
quad-edge [4]. In contrast, real-time computer graphics represents surfaces
with face-vertex meshes, since for surface rendering, there is no need for the
explicit representation of edges.

In most cases, when mainly local modifications are used (e.g. vertex split,
edge flip, face removal), traditional winged edge and half-edge data
structures perform well. However, for global operations (affecting lots of
vertices, edges, faces), the advantages of edge-based data structures seem to
diminish. In this research we introduce a novel data structure for
representation of triangle meshes. Our representation is based on the
concept of face-vertex meshes with adjacencies, but we use some extra
information and new ideas that greatly simplify the implementation of
algorithms.

Subdivision
Smoothing,
denoising

Cutting,

slicing,

splitting

Attaching,

detaching,

fracturing

The environment that can be destroyed, objects that can be cut are good
examples for use-cases when we often need to perform global operations.

When designing the data structure, we stated the following requirements.

1 1 2 033

17 0 0 17 8

0 3 4 0

4 2 29 7

25

27

4 5 0 0

1 4 6 1

31

7

0

5

10

15

18

23

Half-edges

In the implementation of our data structure, we did not create a new face class, which
would achieve similar encapsulation. Instead, we added some extra (one- and multi-
dimensional) arrays containing all the necessary geometric information to the vertex and
index arrays, similarly to the render dynamic meshes [8].

Notice, that SolidMesh data structure explicitly contains the vertex array and the index
array that we pass to the GPU for rendering. In addition, it stores all the topological
information that sufficient for performing complex mesh operations.

v0

v1

v2

v3

v4

v5

Vertices Faces

1 0 4 1 4 5 5 6 2 5 2 1 6 7 3 6 3 2

8 7 1 0 11 3 10 5 3 2 8 1 10 6 5 4 9 2

0 2 0 2 1 2 1 2 0 2 1 2 0 1 0 2 1 1

v0 v1 v2 v3 v4 v5

5 4 5 4 4 5

0 0 2 4 0 1

1 0 2 2 2 2

Vertices

Degrees

Associated
triangles

Triangles

Adjacent
triangles

...

...

...

...

...

...

...

...

Explicit use of

vertex array &

index array

No edges
Fixed amount of

data stored per

vertex / triangle

Fast global

operations

We compared our representation with the industry standard half-edge. We
refer to our data structure as SolidMesh, emphasizing that it is suitable only
for storing triangulation of surfaces of solid geometries.

In SolidMesh data structure a vertex stores its degree, and a reference for itself in an
arbitrary triangle. Edges are only implicitly represented, any two circularly consecutive
vertex of a triangle define an edge. Using this convention, a face stores references to its
edge-adjacent triangles and endpoints of its own edges.

Our results seem to support that, despite the lack of explicit edge representation in our
data structure, complex operations can be executed much faster with it. According to
our measurements, the Laplacian smoothing and Loop subdivision implemented in
SolidMesh data structure ran approximately 10 times faster than the half-edge
implementation.

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

Lo
ga

ri
th

m
 o

f
ex

ec
u

ti
o

n
 t

im
e

Logarithm of vertex number

Laplacian Smoothing

SolidMesh

Half-edge
-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

2,5

3

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

Lo
ga

ri
th

m
 o

f
ex

ec
u

ti
o

n
 t

im
e

Logarithm of vertex number

Loop Subdivision

SolidMesh

Half-edge

Model Vertices
Smoothing time [ms] Subdivision time [ms]

SolidMesh Half-edge SolidMesh Half-edge

Unit Cube 8 0,01 0,02 0,02 0,10

Sphere 482 0,16 0,74 0,79 5,63

Cube 602 0,18 0,70 1,01 7,33

Torusknot 880 0,26 0,92 1,46 11,36

2-tori 1156 0,35 1,33 2,05 14,37

Bunny 2503 0,72 3,70 4,81 34,78

Mug 5084 1,49 8,48 8,83 60,87

Ducky 6390 1,93 9,05 11,12 71,99

Armadillo 15002 4,50 26,50 31,74 370,69

	1. dia

