
DISTRIBUTED SURFACE RECONSTRUCTION

Diana Marin, Patrick Komon, Stefan Ohrhallinger and Michael Wimmer

Research Unit of Computer Graphics
Ins�tute of Visual Compu�ng & Human‐Centered Technology

TU Wien, Austria

RESULTS

METHOD

SPLITTING

DISTRIBUTED VERSION

CONCLUSION

INTRODUCTION

Recent advances in scanning abili�es, together with the increase in

popularity of digital twins usage, created the tools to create and,

respec�vely, the need to process massive scans of real‐life elements.

Hence, we are now facing the ques�on of how to quickly process

amounts of data that easily exceed millions of points while s�ll crea�ng

a faithful representa�on of the ini�al point cloud.

To answer this ques�on, we extend a surface reconstruc�on algorithm

[POEM24] based on the Delaunay triangula�on to work distributedly on

cluster, by taking advantage of the local connec�vity required by the

algorithm. We split the input into �les and add a parameter‐based

padding to each �le to create an overlap. This ensures that no surface

data is missing in the final reconstruc�on while the amount of duplicate

informa�on and the data transfer between nodes is minimized.

RELATED WORK

Numerous methods to parallelize the Delaunay triangula�on [PMP14,

CMYB19] have been developed recently, as it represents a first step in

many surface reconstruc�on methods. The authors introduce various

paddings to ensure that the node‐computed triangula�on agrees with

the global triangula�on. Our method, even though it uses the Delaunay

triangula�on, does not require a global triangula�on of the input points

as it imposes a maximum edge length of triangles in the output,

condi�on we exploit in our work.

Recently, the state‐of‐the‐art surface reconstruc�on ‐ Poisson

Reconstruc�on [KBH06], has been adapted for out‐of‐core usage

[KH23]. However, our method does not require any preprocessing of the

point cloud or addi�onal informa�on such as normals.

The distributed version exhibits much slower growth, peaking at a

speedup factor of 5 for 32 million points and 32 nodes due to data

duplica�on ‐ Figure 2. While varying the number of nodes for a fixed

number of points, finer subdivisions allow for be�er work distribu�on,

resul�ng in poten�ally lower run �mes. However, choosing finer

subdivisions results in significantly more duplicated points, eventually

canceling out any speed gains from adding more nodes.

Spli�ng is done on the GPU using CUDA on a single node while the reconstruc�on is distributed via MPI to
up to 32 CPU nodes. We have evaluated our implementa�on on the VSC3+ HPC cluster, varying input sizes
and numbers of nodes. We used truncated versions of a real‐world aerial photogrammetry scan to simulate
increasing input size ‐ Figure 1.

Increasing the number of nodes with fixed input size and subdivision shows �mings close to the linear
speedup which is the theore�cal maximum. By using 16 nodes and scaling up the input size, the run �mes of
both original and distributed versions increase according to their expected linearithmic behavior.

Our method adapts a surface reconstruc�on algorithm to work distributedly, with minimal data duplica�on, achieving speedups close to linear for various configura�ons. We plan to
inves�gate other data‐spli�ng approaches, as well as the possibility of parallelizing the reconstruc�on on a node level. Moreover, we aim to evaluate our method on more configura�ons
and compare it to recent work.

REFERENCES

[CMYB19] CARAFFA L., MEMARI P., YIRCI M., BRÉDIF M.: Tile & merge: Distributed delaunay triangula�ons for cloud compu�ng. In 2019
IEEE Interna�onal Conference on Big Data (2019), pp. 1613–1618.
[KBH06] KAZHDAN M., BOLITHO M., HOPPE H.: Poisson surface reconstruc�on. In Proceedings of SGP (2006), SGP ’06, p. 61–70.
[KH23] KAZHDAN M., HOPPE H.: Distributed poisson surface reconstruc�on. In Computer Graphics Forum (2023), vol. 42, p. e14925.
[PMP14] PETERKA T., MOROZOV D., PHILLIPS C.: High‐performance computa�on of distributed‐memory parallel 3d voronoi and delaunay
tessella�on. In SC ’14 (2014), pp. 997–1007.
[POEM24] PARAKKAT A. D., OHRHALLINGER S., EISEMANN E., MEMARI P.: Ballmerge: High‐quality fast surface reconstruc�on via voronoi balls.
In Proc. of Eurographics, to appear (2024).

Figure 1: Reconstructed surface of the eclepens dataset.

Resul�ng surface.Point cloud input.

Figure 2: Run �me comparison between original and distributed version using

datasets with 16 and 32 million points on 1‐32 nodes.

We adapt the recent curve and surface reconstruc�on algorithm Ballmerge [POEM24] to work distributedly.

Its surface reconstruc�on method has two variants: global and local, both star�ng from a Delaunay

triangula�on of the input. While the Global Ballmerge merges overlapping regions obtaining a manifold,

water‐�ght mesh, the Local Ballmerge filters some of the triangles based on the following criteria: the

intersec�on ra�o between their respec�ve Voronoi balls is less than a threshold , and the longest edge of

the triangle is shorter than a predefined . We will only concern ourselves with the Local version, as it is

faster and easier to distribute. Moreover, point clouds with a magnitude of millions are usually scans of

outdoor scenes for which, due to scan shadows or resolu�on, it is infeasible to enforce a manifold output.

The regularly subdivided �les are assigned and distributed to nodes. Each node performs surface

reconstruc�on on its assigned �les by locally execu�ng Local Ballmerge. As points obtained from real‐world

scans usually are not distributed uniformly, the number of points within �les may vary a lot. To balance out

the load, we assign �les to nodes using longest‐processing‐�me‐first list scheduling, an efficient and good

approxima�on of the op�mal solu�on to the load‐balancing problem. Merging is trivially done by taking the

union of all local results. Because of the padding, the overall result is guaranteed to be the same as when

running Local Ballmerge on the en�re input. Using points, reconstruc�on nodes and cores for spli�ng,

our expected run �me complexity is in the best case of uniform point distribu�on, and

 in the worst case, as the original method.

The input data needs to be split to parallelize the reconstruc�on algorithm. We choose to split the input
along a three‐dimensional regular grid due to its simplicity and ease of paralleliza�on. Surface
reconstruc�on can now be performed in each grid cell individually. However, edges and triangles might be
shared between cells, hence the reconstruc�on might miss important parts of the surface. To mi�gate this,
we introduce a padding around each cell.

Since we filter triangles with edges longer than , we pad the cells with in the posi�ve direc�ons so no
possibly valid triangles are missed in the Delaunay triangula�on. Furthermore, we ensure that if points are in

different cells, their Voronoi balls intersec�on ra�o is larger than the predefined . This is done by padding

with in all direc�ons. Following the original algorithm, we use , where is the diagonal length

of the input bounding box, and change their default value to in our experiments, as this
value improved the quality of our reconstruc�on.

