
In this presentation, we investigate the performance—as well as the quality
difference—between the state of the art NVIDIA DXR ray tracing pipeline and
a voxelspace ray marching (VSRM). In order to maintain an acceptable quality
image outcome, as well as frame-rate, for tested low numbers of rays from
one to 32, we use a simple denoiser. We show a similar quality outcome and
less progressive dependency on the number of rays for VSRM compared with
DXR.

The goal is to investigate the performance and quality of the ray tracing
acceleration structure of the NVIDIA RTX platform as opposed to a VSRM solution
for generating indirect lighting as part of a global illumination solution. Two
versions of a graphics program with a modified version of the Crytek Sponza scene
are created, one built on top of the NVIDIA Falcor framework for DirectX12 for
access to DXR (RTX), and one built on top of OpenGL 4.5 (Voxel Ray Marching).
Our VSRM approach voxelizes the scene based on three different camera positions,
and in a final render-pass employs ray marching from each visible screenspace pixel
to accumulate indirect light. It is important to note we do not attempt to optimize
the voxelization stage
1. Voxelize the 3D scene with back-face culling and depth test disabled,

orthographically render the scene from three different perspectives (e.g -x, -y, -
z). Calculate direct lighting and shadows for each rasterized fragment. Using
fragments’ world positions, calculate the average color of each voxel and store
it in a 3D texture.

2. Calculate indirect lighting: Raymarch in voxel-space from each fragment’s world
position in random directions generally aligned with the fragment’s normal
vector. If the raymarch hits a voxel, add a percentage of the voxel’s color to the
result; the weight of the contribution is based on the number of samples and
the distance falloff. Falloff = 1.0 − (HitDistance/MaxRayDistance). Denoise the
ray marching results using any generic image denoiser. In our solution, we use a
rudimentary Gaussian blurdenoiser with normal and depth testing for
neighboring pixels. Calculate and store direct lighting and shadows.Render an
image to the screen that combines the original colors, direct lighting, and ray
marching information using the following formula (we define multiplication of
two vectors as a component-wise multiplication). Final = DirectLighting +
(Original ∗ RayMarching)

For the DXR approach, we use the NVIDIA RTX platform for direct and indirect
lighting calculations. 1. Raytrace from the fragment world-space position towards
the world-space light position. This is known as a "shadow ray". 2. If a "shadow ray"
misses all geometry, evaluate the direct lighting information at the fragment and
store in a texture. Else, the point is in shadow; thus, direct lighting contribution is
zero. 3. From each fragment, trace a set of indirect lighting rays in random
directions generally aligned with the initial point’s normal. 4. For each indirect ray
hit, add the direct lighting to the indirect lighting result. The weight of the
contribution is based on the number of samples and a distance falloff described
above. 5. Denoise ray tracing results using any generic image denoiser. Our solution
uses a rudimentary Gaussian blur denoiser with normal and depth testing for
neighboring pixels. 6. Combine direct lighting and denoised ray tracing results.

[1] CRASSIN C., NEYRET F., SAINZ M., GREEN S., EISEMANN E.: Interactive indirect illumination using voxel cone tracing. In Computer
Graphics Forum (2011)
[2] GARCÍA A., MURGUIA S., OLIVARES U., RAMOS F. F.: Fast parallel construction of stack-less complete lbvh trees with efficient bit-trail
traversal for ray tracing. In Proceedings of the 13th ACM SIGGRAPH international conference on virtual-reality continuum and its
applications in industry (2014)
[3] KALLWEIT S., CLARBERG P., KOLB C., DAVIDOVI ˇC T., YAO K.-H., FOLEY T., HE Y., WU L., CHEN L., AKENINE-MÖLLER T., WYMAN C.,
CRASSIN C., BENTY N.: The Falcor rendering frame-
work, 3 2022.
[4] LIU E., LLAMAS I., KELLY P., ET AL.: Cinematic rendering in ue4 with real-time ray tracing and denoising. In Ray Tracing Gems.
[5] MOON B., JUN J. Y., LEE J., KIM K., HACHISUKA T., YOON S.-E.: Robust image denoising using a virtual flash image for
monte carlo ray tracing. In Computer Graphics Forum (2013)

LOGO

#1

PROBLEM METHODOLOGY

RESULTS
Performance metrics were captured using an RTX 3080 GPU at 1080p
resolution. Each approach was tested in four different locations in the scene
using 1, 2, 4, 8, 16, and 32 rays per pixel, with the denoiser turned off.
Denoising was disabled as it is generic and any denoiser of varying
performance could be substituted.

In the qualitative assessment figure to the right bottom, the qualitative
differences between VSRM and DXR can be seen. While both approaches are
relatively similar regarding indirect light intensity and reach, VSRM sampling
from voxels, which are set-sized volumes of average light, results in more light
accumulation as well as less pronounced indirect light colors.
As is illustrated in the measurements to the right, VSRM has a much more
linear-leaning progression with increasing number of rays compared to DXR.
This is due to the screen-space voxelization as well as an in average expected
ray-collision distance with upper limit. As our voxelization stage is not
optimized, note, that frame-rates on VSRM can be improved based on
different voxelization approaches and API capabilities. With increasing
number of rays, DXR falls below 60 fps at 4 rays. These results strongly
indicate VSRM has a better scalability than the DXR ray tracing for reaching
high sample counts.

Due to increasing GPU processing power, real-time ray tracing becomes
feasible for games and graphic intensive real-time applications with an
underlying acceleration structure for fast ray-triangle collision [1,2,3]. NVIDIA
DXR is using a two-level acceleration structure to find the corresponding
triangles of a given geometry for every ray. The recent Vulkan API has a
similar approach to the acceleration structure [4,5]. Ray tracing still has a high
computational demand, and for each pixel in the output-image, only a small
number of rays can be computed while still maintaining real-time frame-rates.
To compensate for the noisy outcome, denoisers are used. We investigate a
VSRM approach where geometry density only affects voxelization, not ray-
collision detection. The question is whether VSRM can match the global
illumination quality of DXR and the performance differences due to its
different approach of ray-geometry collision detection. Our VSRM is based on
voxel-cone tracing, but we use ray marching to find the ray-geometry collision
due to 1) it's higher collision resolution, 2) the linear scaling of computational
time due to a static raymarch distance progression (over all rays), and 3) the
necessity of a denoiser in DXR as well as VSRM for a better comparison.

OVERVIEW

REFERENCESAFFILIATIONS

Comparing NVIDIA RTX and a Novel Voxel-
Space Ray Marching Approach as Global
Illumination Solutions
O. Erlich1, S. Aristizabal1, L. Li1, B. Woodard2 , I. Humer and C. Eckhardt1

1 Cal Poly San Luis Obispo, USA, 2 Brown University, USA

LOGO

#2

LOGO

#3

LOGO

#4

	Slide 1

