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Abstract
Flows in networks (or graphs) play a significant role in numerous computer vision tasks. The scalar-valued edges in these
graphs often lead to a loss of information and thereby to limitations in terms of expressiveness. For example, oftentimes high-
dimensional data (e.g. feature descriptors) are mapped to a single scalar value (e.g. the similarity between two feature descrip-
tors). To overcome this limitation, we propose a novel formalism for non-separable multi-dimensional network flows. By doing
so, we enable an automatic and adaptive feature selection strategy – since the flow is defined on a per-dimension basis, the max-
imizing flow automatically chooses the best matching feature dimensions. As a proof of concept, we apply our formalism to the
multi-object tracking problem and demonstrate that our approach outperforms scalar formulations on the MOT16 benchmark
in terms of robustness to noise.

CCS Concepts
• Theory of computation → Design and analysis of algorithms; Theory and algorithms for application domains;

1. Introduction

Network flow algorithms are popular in computer vision and image
analysis due to their broad range of applications, including image
segmentation [EBA06] or multi-object tracking (MOT) [ZLN08].
Yet, they require that multi-dimensional information is mapped to
scalar values which often has the downside that information is lost
and thereby the expressiveness limited. Hence, in this work we take
the first step to explore the novel direction of non-separable multi-
dimensional flows:

• For the first time we present a non-separable multi-commodity
flow formulation, where a flow unit with all its commodities
cannot be separated throughout the graph.

• As a proof of concept, we show how our formulation can be
applied in the context of multi-object tracking, for which we
demonstrate that it increases the robustness to noise.

2. Related Work

Garg et al. [GVY96] extend traditional maximum flows [HR55]
to multi-commodity flows by considering multi-dimensional flows
per edge. Li et al. [LAB10] use a binary variable to ensure that only
one path per commodity can be used to reach the sink. To the best
of our knowledge, there does not exist a non-separable maximum
multi-commodity formulation, where non-separable, in this case,
means that only one path for all commodities is used.

While traditional MOT approaches [ZLN08] minimize the cost
through the graph we maximize a multi-commodity flow.

3. Method

A graph is a tuple G = (V,E), where V represents the nodes and
E ⊆ V × V the set of edges. In the scalar maximum flow ap-
proach [HR55] the sum of flows fuv ∈ R from the source node
s ∈ V to the sink node t ∈ V is maximized while not exceeding
the capacity cuv ∈ R+ on every edge (see Figure 1).
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Figure 1: Scalar Maximum Flow: Maximize the flow (blue) from
source node s to sink node t while not exceeding the capacity (red).

In comparison to the scalar approach, we assign a capacity vec-
tor cuv ∈ Rk

+ with k dimensions to every edge (u,v) ∈ E . Addition-
ally, we define a multi-dimensional flow fuv ∈ Rk and a a decision
variable buv ∈ {0,1}, indicating whether an edge is active or not.
An active edge means that the flow can be non-zero, whereas an
inactive edge ensures that its flow is the zero vector. We impose
the capacity constraint that each flow fuv through an edge must be
elementwise smaller than its capacity. The sum of flows of all in-
coming edges at every node needs to equal the sum of flows of all
outgoing edges (flow conservation). Further, we constrain that for
each node only a single incoming and a single outgoing flow vec-
tor may have a non-zero flow, thereby ensuring that incoming flow
cannot be separated into multiple edges (node count constraint). To
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fix the total number of flow entities leaving the source node, and
entering the target node to a constant d we define the total count
constraint. Overall, the resulting problem is a mixed-integer pro-
gramming (MIP) problem that reads

maximize
fuv∈Rk

buv ∈ {0,1}

∑
v:s→v

f T
sv1

subject to fuv ≤ buvcuv, ∀(u,v) ∈ E (capacity),

∑
u:u→v

fuv = ∑
w:v→w

fvw, ∀v ̸= s, t (flow cons.),

∑
u:u→v

buv = ∑
w:v→w

bvw = 1, ∀v ̸= s, t (node count),

∑
u:s→u

bsu = ∑
v:v→t

bvt = d, ∀u,v ̸= s, t (total count),

fuv ≥ 0 ∀(u,v) ∈ E (non-neg.).

3.1. Application to Multi-Object Tracking

Similar to the scalar flow model for MOT [ZLN08], we define three
different types of edges: (i) observation edges, (ii) transition edges,
and (iii) enter/exit edges. We represent every detected object xi in
a frame by a vector and assign this vector to an observation edge
(ei,oi) as a capacity vector. We show an example graph in Figure 2.

Frame t Frame t +1 Frame t +2

[1
0

] [1
0

] [1
0

][0
1

] [0
1

][0.5
0.5

] [0.5
0.5

]

[0
1

]
[1
0

]
[0
1

]
[0.5
0.5

]
[1
0

]
[0.5
0.5

]

s

t

e1

e2

o1

o2

e3

e4

e5

o3

o4

o5

e6

e7

o6

o7

[1
0

]

Figure 2: Graph construction: Objects of the sample frames (top
row) are represented by feature vectors (middle row). These vectors
are set as capacity on the corresponding object edges (bottom row).

By connecting the source to all nodes ei and connecting all nodes
oi to the sink, objects can appear/disappear at any time (enter/exit
nodes). Additionally, we connect all end nodes oi with all start
nodes e j in a timespan ∆t (transition edges), such that trajectories
can skip the next ∆t frames. Enter, exit, and transition edges are
assigned infinite capacity. While the graph connections look simi-
lar to the scalar method [ZLN08], the capacities are set differently
such that we can send vector-valued instead of scalar-valued flows.

4. Results

We choose training sequences (2,4,5,9,10 and 11) of the MOT16
Challenge dataset [MLTR∗16] as a benchmark. We provide the

ground truth boxes and the ground truth number of individual ob-
jects to the algorithms such that we focus on the tracking rather than
the detection part. For our experiments, we use two different fea-
ture descriptors: color histograms and deep features( [HZRS16]).
To evaluate the robustness, we add random Gaussian noise with
different variances to every image. We reduce the runtime by prun-
ing and batch splitting. To evaluate our algorithm we use a metric
that normalizes the identity switches (IDSW) by the total number
of ground truth boxes (GT) for all frames t: IDSWnorm = ∑t IDSWt

∑t GTt
.

In Figure 3, we show that our algorithm performs substantially
better on noisy data than the scalar baseline method [ZLN08] when
using color features and deep features. Our method automatically
allows to select (per object) feature dimensions that have the small-
est variability across the entire sequence. The scalar method is not
able to dynamically select features, since it computes a scalar score
that summarizes feature similarities, and thus performs worse.
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Figure 3: IDSWnorm (↓) for different noise values: Our method
performs better on noisy images than the scalar method with dif-
ferent feature descriptors (left: color, right: deep features).

5. Conclusion

For the first time we conceptualized a non-separable multi-
dimensional maximum flow formulation, and we demonstrated that
such a formalism can naturally be applied to multi-object tracking.
Since our flow is defined on a per-dimension basis, the maximizing
flow automatically chooses the subset of feature dimensions that
best match across a sequence.
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