MUuULTI-DI1SPLAY RAY TRACING FRAMEWORK

Luciano A. Romero Calla, Bipul Mohanto?, Renato Pajarolal, and Oliver Staadt?

FUniversity of Zurich, Switzerland
“University of Rostock, Germany

We have developed a framework for multi—display render- The Dlsplay processes run the multj_display module. Its o
- ing using advanced technologies such as MPI (Message implementation extends the OpenGL-based viewer from the i
~ Passing Interface), CUDA (Compute Unified Device Ar- gproshan framework [9] to handle multi-display using MPI
- chitecture), CUDA IPC (Inter-Process Communication), and CUDA IPC. An RT & Display process initialize and run mOOO -
- OptiX 7.6, and the C++ programming language. 2 ray-tracer implementation per GPU. It handles all the ren- | |
der tasks for the process running on the same GPU and their PR

respective displays. Z || | s

 We can divide the related work into rasterization and ray-
tracing based approaches. Among the latest rasterization | M”d Il MHd | : RTP%O%:?W ?iiléiii pDiZl;L?s Eiiléiii
~ works, we find [1], which extend [2] to handle load balanc- User Mo e —
ing and LOD compared to Fqualizer [3]. Equalizer [3] W —_— R
~ is a framework for scalable, parallel rendering and data Fig, 4: Framework architecture Fig, 5: Framework architecture =
- distribution for large scale visualizations. Another rele- e
~ vant work is [4], which extends OpenGL to implement a ~ The setup to run our experiments for the general framework Scene Triangles Monitors GPU Memory GPU usage % FPS Rendering
- distributed framework for high-performance visualization ~ consists of two nodes with an Intel Core i7-10700K processor, SZE iﬁﬁﬁﬁ} 8328233 j 12;;? ﬁ;g Zﬁ Zf ?ﬁ gz Ig)f;lcess
~ systems. ~ 32GBof RAM, and NVIDIA GeForce RTX 3090 with 24GB Spowa 2622074 2HO NI 66 % 67 per
- Our framework belongs to the second group of ray- ~ of memory and a GeForce RTX 3080 with 10GB of memory, gan ﬁf;lzs 0030699 4.3 3968 MiB, 3382 M;B 69 %, = 0| 7y iii g;icess o
~ tracing-based approaches. In this group, we find [5] that ~ respectively in each node. The setup includes four monitors Sané\gﬁg 9222222 jg 241‘13";4‘?%‘)151;3;?4013 on gzc%f“gon%de il
- presents a framework for rendering large tiled display - on the first node and three on the second one, all with a res- Sponza| 262267 4,3 4939 MiB, 3375 MiB| 66 %, 49 % 76 per process
~ walls as a display service. [6] proposed a distributed frame ~ olution of 2160 x 1440 pixels. Table in Figure 6 shows basics Fig. 6: FPS for a ray tracer with primary and shadow rays.
~ buffer approach and extended the API from OSPRay [7]. ~ results.
= HEssssssa s e
solution to path—tracmg MASSiVe SCENes across multlple Variable Rate Path Tracer
- GPUs has been proposed. o
We have used 4 SPP (sample-per-pixel) for the unbiased path

tracer and 4 SPP in the foveated, 2 SPP in the intermediate,

and 1 SPP in the peripheral region for the variable rate path

___________ . L tracer. The ray bounces are limited to three. In addition,
o Figures 1, 2, and 3 shows our framework running in a , , . o
2% 3 display wall we used Remhard Tone Mapping [10] for post-processing.
Figure 8 1llustrates the results. The average framerate for

uniform sample path tracer is 3.72fps, whereas the variable

rate path tracing achieved framerate on average 16.62fps:;

that is 4.45x faster. EEEEE

Fig. 7. Foveated, intermediate, and peripheral regions.

Fig. 8: The rendering results compare uniform (left) and our variable (right) numbers of radiance rays. The green box (right) marks the foveated region. In the lower right
corner, a 3X zoom inset view of the area is displayed. Ponos

1] Yangzi Dong and Chao Peng. “Multi-GPU multi-display rendering of extremely large 3D environments”. In: The Visual Computer (Dec. 2022). =

ISSN: 1432-2315. DOI: 10.1007/s00371-022-02740-7. S
2] Yangzi Dong and Chao Peng. “Screen Partitioning Load Balancing for Parallel Rendering on a Multi-GPU Multi-Display Workstation”. In:
Eurographics Symposium on Parallel Graphics and Visualization. Ed. by Hank Childs and Steffen Frey. The Eurographics Association, 2019. =
ISBN: 978-3-03868-079-6. DOIL: 10.2312/pgv.20191111. o
3] Stefan Eilemann, David Steiner, and Renato Pajarola. “Equalizer 2.0 - Convergence of a Parallel Rendering Framework”. In: IEEE Transactions
on Visualization and Computer Graphics 26.2 (Feb. 2020), pp. 1292-1307. DOI: 10.1109/TVCG.2018.2870822.
4] Kai-Uwe Doerr and Falko Kuester. “CGLX: A Scalable, High-Performance Visualization Framework for Networked Display Environments”. In:
IEEE Transactions on Visualization and Computer Graphics 17.2 (Mar. 2011), pp. 320-332.
5] Mengjiao Han et al. “A Virtual Frame Buffer Abstraction for Parallel Rendering of Large Tiled Display Walls”. In: IEEE Visualization Conference
(VIS). 2020, pp. 11-15. DOL: 10.1109/VIS47514.2020.000009. o
6] Will Usher et al. “Scalable Ray Tracing Using the Distributed FrameBuffer”. In: Computer Graphics Forum 38.3 (2019), pp. 455-466. por:
10.1111/cgf . 13702. g
7] I Wald et al. “OSPRay - A CPU Ray Tracing Framework for Scientific Visualization”. In: IEEE Transactions on Visualization and Computer
Graphics 23.1 (2017), pp. 931-940. DOI: 10.1109/TVCG.2016.2599041. Do
8] Milan Jaros et al. “GPU Accelerated Path Tracing of Massive Scenes”. In: ACM Transactions on Graphics 40.2 (Apr. 2021). 18SN: 0730-0301.
DOT: 10.1145/3447807. g
9] Luciano Arnaldo Romero Calla and Lizeth Joseline Fuentes Perez. gproshan: geometry processing and shape analysis framework. URL:
https://github.com/larc/gproshan. T

110] Yasir Salih et al. “Tone mapping of HDR images: A review”. In: 2012 4th International Conference on Intelligent and Advanced Systems
(ICIAS2012). Vol. 1. 2012, pp. 368-373. DOT: 10.1109/ICIAS.2012.6306220.

