
Hermite interpolation of heightmaps
Róbert Bán

rob.ban@inf.elte.hu
Gábor Valasek

valasek@inf.elte.hu
Eötvös Loránd University, Budapest, Hungary

1. Introduction
The goal of this research is to extend heightmap rendering and shading.
The heightmap is a real-valued function over a two-dimensional domain,
describing geometric detail over an underlying coarser surface. It is usu-
ally encoded as a texture. Displacement mapping uses the heightmap to
determine the positions of a fine vertex grid. In contrast, parallax map-
ping renders the coarser surface but adjusts the lighting according to the
heightmap. See [1] for a detailed survey on these methods.

2. Problem statement
Heightmaps are stored in 2D textures: height values and normal XY.

Bilinear filtering results in a C0-continuous surface.

For a smooth output, we might need to increase the resolution considerably.

Our goal is to generate smooth, C1-continuous heightfields without in-
creasing the storage requirements.

3. Hermite heightmap
Store partial derivatives/normals in samples.

Use Hermite interpolation instead of bilinear in-
terpolation inside of the cells.

The reconstructed surface is C1-continuous.

For the improved continuity we need more
stored data, but it is often already stored in the
form of normal vectors.

4. Implementation
The stored partial derivatives can be calculated
with numerical differentiation methods, such as
central differences, or automatic differentiation
if the exact function is known.

The four surrounding samples are gathered upon
sampling, which are then interpolated with two-
dimensional Hermite basis functions.

The basis functions are evaluated at the local
coordinates of the sampling position in the cell.

Our C++ sample implementation is avail-
able at https://github.com/Bundas102/
falcor-hermite-heightmap.

5. Interpolation details
The heightmap is stored in a texture as a matrix of samples: F : {0..N} × {0..M} → R3. For an
f : [0, 1]2 → R input function, we store the following values in F (i ∈ {0..N}, j ∈ {0..M}):

F [i][j][0] = f
(

i
N , j

M

)
, F [i][j][1] = ∂xf

(
i

N , j
M

)
, F [i][j][2] = ∂yf

(
i

N , j
M

)
.

Let (u, v) ∈ [0, 1]2 be the sampling position. Then calculate (U, V ) = (Nu, Mv) scaled coordinates,
(I, J) = (⌊U⌋, ⌊V ⌋) cell indices and (x, y) = (U − ⌊U⌋, V − ⌊V ⌋) local coordinates. Using the 1D
cubic Hermite basis polynomials, the value of the reconstructed function is computed as

f̂(u, v) =
1∑

i=0

1∑
j=0

(F [I + i][J + j][0]h0
i (x)h0

j (y)+

F [I + i][J + j][1]h1
i (x)h0

j (y)+
F [I + i][J + j][2]h0

i (x)h1
j (y)).

-0.2

0

0.2

0.4

0.6

0.8

1
h

0

0

h
1

0

h
0

1

h
1

1

The two-dimensional Hermite basis functions are the result of the tensor product of the one-
dimensional Hermite basis functions.

6. Results
Map res. Bilinear Hermite H.normal

1282 0.17 ms 0.42 ms 0.21 ms
2562 0.20 ms 0.44 ms 0.24 ms
5122 0.28 ms 0.49 ms 0.31 ms

The figures below show comparisons between
traditional bilinear and the proposed Hermite
interpolation techniques. The latter achieves
similar visuals to higher resolution bilinear fil-
tering. The table of render times were measured
on a desktop AMD RX 5700 at full HD resolution, using 32 relaxed cone map steps and 5 binary
search iterations. Bilinear heightfield with Hermite normals (H.normal) achieved similar visual qual-
ity to Hermite interpolation of both the heightmap and normals. As such, we propose to use bilinear
heightfields with Hermite interpolated normals for maximum performance and quality. This also
facilitates the use of lower resolution heightfields.

64 × 64 bilinear – 4096 values 32 × 32 Hermite – 3072 values

512 × 512 bilinear 256×256 Hermite

7. Conclusion
We proposed a method for high quality
heightmap rendering. Our heightmap represen-
tation is best suited for rendering smooth sur-
faces. As height values are usually stored along
their geometric surface normals, our proposed
method incurs no additional storage cost. Our
method does require manual filtering of the data
and extra calculations to evaluate the Hermite
basis polynomials to compute the interpolated
result. This additional cost may be reduced by
overlapping arithmetic work while texture data
is being transferred.

8. References
[1] László Szirmay-Kalos and Tamás Umenhoffer.

Displacement mapping on the GPU - state of the
art. Comput. Graph. Forum, 27(6):1567–1592,
2008.

9. Acknowledgement
We would like to thank Visual Concepts for pro-

viding the AMD GPU used in the tests.
Supported by the ÚNKP-21-3 New National Ex-

cellence Program of the Ministry for Innovation
and Technology from the source of the National
Research, Development and Innovation Fund.


