
EUROGRAPHICS 2022/ J. Hasic and B. Sauvage Poster

Transfer Textures for Fast Precomputed Radiance Transfer

Sirikonda Dhawal , Aakash KT , P.J. Narayanan

CVIT, KCIS, IIIT-Hyderabad, Telangana, India

Abstract
Precomputed Radiance Transfer (PRT) can achieve high-quality renders of glossy materials at real-time framerates. PRT in-
volves precomputing a k-dimensional transfer vector or a k × k- matrix of Spherical Harmonic (SH) coefficients at specific
points for a scene depending on whether the material is diffuse or glossy respectively. Most prior art precomputes values at
vertices of the mesh and interpolates color for interior points. They require finer mesh tessellations for high-quality renders.
In this work, we introduce transfer textures for decoupling mesh resolution from transfer storage and sampling specifically
benefiting the glossy renders. Dense sampling of the transfer is possible on the fragment shader while rendering with the use
of transfer textures for both diffuse as well as glossy materials, even with a low tessellation. This simultaneously provides high
render quality and frame rates.

CCS Concepts
• Computing methodologies → Rasterization; Ray tracing; Visibility;

1. Introduction & Related Work
Precomputed Radiance Transfer (PRT) offloads expensive compu-
tations of ray tracing to a pre-computation step, after which the
stored data can be utilized for real-time photorealistic rendering.
The core PRT framework as proposed by [SKS02] precomputes the
transfer function and stores it in SH basis at vertices of the scene.
The focus of this work is the storage of transfer in a texture instead,
effectively decoupling mesh resolution from transfer sampling and
storage. Prior works like [McK10] and PRT of D3D9 leverage the
continuous texture space to store transfer but are limited to dif-
fuse reflection, due to their choice of formulation [SKS02] and ex-
tending their work directly will lead to heavy texture storage (Tbl.
1). Usage of transfer textures facilitates the evaluation of color for
each fragment in a fragment shader, in contrast to current PRT
approaches that evaluate color for each vertex in a vertex shader.
The advantage of a fragment shader-based approach is that it im-
proves render quality, especially for lowly tessellated meshes (Fig.
2). We describe methods to correctly compute transfer textures. We
augment the triple product method with our transfer textures and
demonstrate real-time framerates and superior render quality. We
also formulate and demonstrate inter-reflections using transfer tex-
tures by completely fixing the light. Our work can be seen as an
extension of Textured-PRT[McK10] for glossy materials and inter-
reflections without incurring additional memory-budget(Tbl. 1).

2. Computing Transfer Textures

The transfer computation involves shooting multiple rays from a
point p in the scene and then evaluating and projecting the trans-
fer to the SH basis. For transfer textures, there are N scene points p

corresponding to each texel t in the texture. The mapping between t
and p is defined by the UV coordinates. To efficiently compute the
transfer texture, we leverage G-Buffers to interpolate surface posi-
tions and normals based on their corresponding UV-Coord. (Alg. 1,
line 2). We read the G-buffer and the scene geometry and evaluate
the transfer function for each texel in the buffer (Alg. 1, lines 4-6).
The transfer obtained is then projected to SH basis and stored at
that texel in To (Alg. 1, lines 7-8). Finally, To is dilated to ensure
that all points inside a triangle receive a transfer value. At run-time,
we fetch transfer To and use it with the triple product formulation
to obtain the color. This allows storage of k-dimensional vector in-
stead of k× k-matrix for each texel.

ALGORITHM 1: Pre-computing and storing the transfer texture.
Input:M,w,h, l: MeshM, width w & height h, SH band l.
Output: To: Precomputed transfer texture

1 T ← Texture(w, h, l) // Init. texture.
2 G = OpenGL(M) // G-Buffer
3 for t in T do
4 point, normal = G[t.x][t.y].vertex, G[t.x][t.y].normal
5 V = ComputeTransfer(point, normal) // Path tracing
6 Vsh = SHProject(V)
7 To[t.x][t.y] = Vsh

8 To = Dilate(To, 3)

2.1. Incorporating inter-reflections

Inter-reflected radiance Bp
i at point p can be modeled as:

Bp
i (ωo) =

∫
Ω

(1−V p(ωi))B
pq(x,ωi)ρ

p(ωo,ωi)(ωi ⊙n)dωi, (1)

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

DOI: 10.2312/egp.20221012 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-6427-8963
https://orcid.org/0000-0002-6615-2950
https://orcid.org/0000-0002-7164-4917
https://doi.org/10.2312/egp.20221012

S.Dhawal & A.KT & P.J. Narayanan / Transfer Textures for Fast Precomputed Radiance Transfer

Figure 1: (a) Interreflection Method(left), (b) Interreflection
Results(left:0-bounce, right:1-bounce)

where Bpq is the radiance from a secondary hit-point q towards
p. First, we factor out 1−V p(x,ωi) by only integrating over rays
which hit some geometry. For a scene point p1 and a secondary
hit q1, the radiance Bp1q1 can easily be precomputed given a zero-
bounce transfer texture To from Alg. 1 (See Fig. 1a). The radiance
from q1 towards p1 is obtained using the triple product formulation
by fetching To to obtain transfer at q1. This is done for all hit-points
from p1. This radiance now forms an indirect environment map for
the point p1, which is then projected to SH basis resulting in a k-
vector Bpq

i , which is stored in a separate inter-reflection texture T1.
At run-time, the indirect radiance can be obtained by convolving
Bpq

i fetched from T1 with the BRDF SH ρ
p
i and evaluating at the

reflection direction.

3. Implementation

We implement Alg. 1 using Embree. The resulting transfer tex-
ture is then used in OpenGL shaders for rendering. We use tex-
ture resolution of 1024×1024. We implement the triple product
method with our transfer textures on a fragment shader with an
early depth pass. All scenes are rendered with glossy materials for
band l = 5(25-coefficients) SH projection with an NVIDIA GPU at
a resolution of 1920×1080. The scene performance comparisons
and configurations are given in Fig. 2 and Tbl. 1 respectively.

4. Results & Evaluation

We first show the results of the Triple Product (TP) method and
Triple Product with Fixed Light (TPFL) method using our transfer

TP(low-Tes) TPFL(low-Tes) TPFL(high-Tes)
Vertex Shader

TP(low-Tes) TPFL(low-Tes)
Fragment Shader (Our)

FPS: 3.62 FPS: 41.2 FPS: 170.2

FPS: 2597.6 FPS: 6.7 FPS: 168.3

FPS: 151.2FPS: 5.2

FPS: 248.1FPS: 363.2

FPS: 10.2 FPS: 116.2 FPS: 110.2 FPS: 202.9FPS: 15.2

Figure 2: Results

Table 1: Memory Requirements

Scene # tris. Vert. Mem. Tex. Mem.
[SKS02] [NRH04] [McK10] Ours

Dragon 1.3M 5.2GB 215.8MB 2.5GB 100MB
TRM 441K 2.3GB 139.3MB 2.5GB 100MB
Plants 18K 64MB 2.5MB 2.5GB 100MB

textures. Fig. 2 shows the renders for three scenes: Plants, Dragon
and TRM(Two Roza, one Monkey). All scenes have a ground plane,
which is minimally tessellated, as shown in the wireframe insets.
The TP and TPFL methods on vertex shader are unable to capture
proper shadows on the ground plane due to sparse sampling of the
transfer. In contrast, the TP method on the fragment shader using
our transfer textures properly reproduces shadows on the plane, al-
beit at a very low FPS. The TPFL method with transfer textures also
achieves a similar render quality at a higher FPS. The TP method on
vertex shader approaches the render quality of our transfer textures
with a highly tessellated ground plane. We note that this requires
the addition of redundant vertices. We further note that such situa-
tions frequently arise in production, for example, on large surfaces
with minimal curvature(walls, floor). In such cases, all previous
PRT methods on vertex shaders require the redundant vertices to
store the transfer, in contrast to our transfer textures method. Next,
we demonstrate inter-reflections using transfer, textures with the
method described in Sec 2.1. The zero-bounce and one-bounce ren-
ders with their corresponding FPS are shown in Fig. 1b for Monkey.
Because of the additional texture fetch, convolution and evaluation
operations, the FPS with inter-reflections is slightly lower (albeit
still real-time).

5. Conclusion, Limitations & Future work

In this paper, we presented transfer textures for decoupling mesh
tessellation from transfer sampling and storage to accommodate
glossy materials and inter-reflections. We described methods to
efficiently and correctly compute these textures and also demon-
strated the incorporation of inter-reflections in a restricted setting.
Finally, we demonstrated real-time framerates for rendering with
transfer textures on the fragment shader and superior render quality
for minimally tessellated meshes. A limitation of transfer textures
is that inter-reflections essentially bake the lighting and BRDF, i.e.
they cannot be changed without re-computation. We note that the
work of [SKS02] also bakes BRDF (including albedo) into their
transfer matrices for inter-reflections. We would like to address this
issue for future extensions of this work. A more comprehensive
version of this work can be found here

References
[McK10] MCKENZIE CHAPTER, HARRISON LEE. “Textured Hierarchi-

cal Precomputed Radiance Transfer”. (2010) 1, 2.

[NRH04] NG, REN, RAMAMOORTHI, RAVI, and HANRAHAN, PAT.
“Triple Product Wavelet Integrals for All-Frequency Relighting”. ACM
Trans. Graph. (Aug. 2004), 477–487 2.

[SKS02] SLOAN, PETER-PIKE, KAUTZ, JAN, and SNYDER, JOHN. “Pre-
computed Radiance Transfer for Real-Time Rendering in Dynamic,
Low-Frequency Lighting Environments”. ACM Trans. Graph. 21.3 (July
2002), 527–536. ISSN: 0730-0301 1, 2.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

28

https://arxiv.org/abs/2203.12399

