
Seamless Compressed Textures

Andrea Maggiordomo and Marco Tarini
Università degli Studi di Milano “La Statale”

PROBLEM
Texture mapping requires UV-maps, and UV-maps (in

general) require texture seams; texture seams (in general)

cause small visual artifacts in rendering; these can be

prevented by careful, slight modifications of a few texels

around the seam.

Unfortunately, GPU-based texture compression schemes

are lossy and introduce their own slight modifications of

texture values, nullifying that effort.

The result is that texture compression may reintroduce the

visual artifacts at seams.

We modify a standard texture compression algorithm to

make it aware of texture seams, resulting in compressed

textures that still prevent the seam artifacts.

RELATED WORK 1
The problem of visual artifact at texture seams has been

identified [7] and countered using several approaches.

The most obvious countermeasure is to limit the amount

of seams, and to carefully locate them in areas where the

artifacts it will be less evident or less disturbing. This

difficult to formalize objective is implicitly sought by

many digital artists constructing the UV-map, and,

incidentally, is one of the characteristics making

automatic UV-map construction differ from the ones

authored by digital artists. Automatic approaches have

been proposed. [5] constructs UV-maps by restricting

texture seams to the axis-aligned case, which is artifact

free; [3] tweaks an both an existing UV-map and an

existing texture image to minimize artifacts. In our work,

we consider the technique [6], which is a simple approach

that tweaks solely the texel values, for a similar results.

Unfortunately, all these approach rely on careful selection

of texel values, which are impacted by texture

compression.

onti

METHODOLOGY

RESULTS

REFERENCES

Standard DXT1 compression

• Block-based Encoding 

(4×4 texel blocks)

• 2 Colors (16-bit RGB 5:6:5)

• 4 possible linear interpolations

• 64 bits per block (32 + 2×16)

For each 4×4 texel block:

(1) Consider 16 texels as pts 

in RGB space

(2) Find 1st principal axis a 

(3) Project pixels on a

(4) Find extremes C0, C1 of segment

(5) Quantize per-texel

parametric position on segment

Can you spot the artifact at the texture seam?

Get our implementation from GitHub: https://github.com/maggio-a/seamless-compressed-textures

[1] BROWN S.: Dxt compression techniques (squish). blog post - https://www.sjbrown.co.uk/posts/ dxt-compression-techniques/, Jan 2007.

[2] IOURCHA K. I., NAYAK K. S., HONG Z.: System and method for fixed-rate block-based image compression with inferred pixel values, Sept. 21 1999. US

Patent 5,956,431.

[3] LIU S., FERGUSON Z., JACOBSON A., GINGOLD Y.: Seamless: Seam erasure and seam-aware decoupling of shape from mesh resolution. ACM

Transactions on Graphics (TOG) 36, 6 (Nov. 2017), 216:1–216:15. doi:10.1145/3130800.3130897.

[4] MAGGIORDOMO A., PONCHIO F., CIGNONI P., TARINI M.: Real-world textured things: A repository of textured models generated with modern photo-

reconstruction tools. Computer Aided Geometric Design 83 (2020), 101943. doi:https://doi.org/10.1016/j.cagd.2020.101943.

[5] RAY N., NIVOLIERS V., LEFEBVRE S., LEVY B.: Invisible seams. In EUROGRAPHICS Symposium on Rendering Conference Proceedings (2010),

Lawrence J., Stamminger M., (Eds.), Eurographics, Eurographics Association. 1

[6] SEBASTIAN SYLVAN: Fixing texture seam with linear leastsquare. blog post - https://www.sebastiansylvan.com/post/LeastSquaresTextureSeams/, 2015.

[7] YUKSEL C., LEFEBVRE S., TARINI M.: Rethinking texture mapping. Comput. Graph. Forum 38, 2 (2019), 535– 551. URL:

https://doi.org/10.1111/cgf.13656, doi: 10.1111/cgf.13656.

RELATED WORK 2
Texture images consume GPU-RAM, which is a scarce,

resource, making texture compression essential.

Compression schemes for textures differ from other

image compression schemes in that individual texel

values must be accessible (during per fragment

processing) in constant time, while keeping the image

compressed in GPU-RAM.

As a consequence, texture compression schemes are

lossy, with a fixed compression ratio, and a comparably

unfavourable trade-off between quality loss and space

occupancy. Examples include simple schemes such as

palette (or color-map) compression, or quantization of

RGB channels, and more sophisticated schemes such as

3Dc, A8L8 (often employed for normal maps), and DXT

schemes (S3TC) [2].

Here. we consider the case of the DTX1 schema, which is

a S3TC schema designed for RGB images, popular in

games etc, featuring a 1:6 compression ratio. There are

several algorithms to compress an image under this

schema, like [1], which we adapt for our purposes.

RELATED WORK 1
The problem of visual artifacts at texture seams has

been identified [7] and countered using several

approaches. The most obvious countermeasure is to limit

the number of seams and carefully place them in areas

where the artifacts will be less evident or less disturbing.

This difficult to formalize objective is implicitly sought

by many digital artists constructing the UV-map, and,

incidentally, is one of the characteristics making

automatic UV-map construction differ from the ones

authored by digital artists. Automatic approaches have

been proposed. [5] constructs UV-maps by restricting

texture seams to the axis-aligned case, which is artifact-

free; [3] tweaks both an existing UV-map and an existing

texture image to minimize artifacts. In our work, we

consider the technique [6], which is a simple approach

that achieves similar results by only adjusting the texel

values. Unfortunately, all these approaches rely on careful

selection of texel values, which are impacted by texture

compression.

RELATED WORK 2
Texture images consume GPU-RAM, which is a scarce

resource, making texture compression essential.

Compression schemes for textures differ from other

image compression schemes in that individual texel

values must be accessible (during per-fragment

processing) in constant time, while keeping the image

compressed in GPU-RAM.

As a consequence, texture compression schemes are

lossy, with a fixed compression ratio, and a comparably

unfavorable trade-off between quality loss and space

occupancy. Examples include simple schemes such as

palette (or color-map) compression, quantization of RGB

channels, and more sophisticated schemes such as 3Dc,

A8L8 (often employed for normal maps), and DXT

schemes (S3TC) [2].

Here. we consider the case of the DXT1 schema, which is

an S3TC schema designed for RGB images, popular in

video games etc, featuring a 1:6 compression ratio. There

are several algorithms to compress an image under this

schema, like [1], which we adapt for our purposes.

        

             

         

            

      

        

      

        

           

 

24 bits per texel

4 bits per texel!

Color deviation
(total RGB differences

with input)

Color discontinuity at seams
(total RGB differences at seam-edges)

THE BETTER
TRADE-OFF

INPUT

seam

Uncompressed 

(24 bits per texel)

DXT1 

(4 bits per texel)

New Compressed Seam Masking

• Makes texture color match 

along mesh seams

• Considering 

texture bilinear interpolation

and DXT1 decoding

Given input texture I:

(1) Compute a seam-masked texture 

with Standard Seam Masking

(2) Compress it in DXT1 using any

standard DXT1 compression

(3) Solve global LS system anew, 

but with per-block colors C0, C1

as 3D variables

D
ATA

SET FR
O

M
 [4

]

G

R

B

C1

C0

Standard Seam Masking

• Makes texture color match 

along mesh seams

• Considering 

texture bilinear interpolation

linear functions in C0, C1

(for a given block encoding)
a

bilinear combinations of texel(i,j)

Color conservation equations (1 per texel)

texel(i, j) = I(i, j).rgb

Seam energy equations (1 per sample 𝑝𝑖)

texture2D(𝑢0
𝑖 ) = texture2D(𝑢1

𝑖)

Given input texture I:

(1) Sample mesh seam-edges 

at uniform discrete intervals 𝑝𝑖
(2) Compute color conservation equations

(3) Compute seamless equations

(4) Solve min 𝐸𝐶 + 𝛼𝐸𝑆 (we use 𝛼 = 2);

as a global Least Squares system 

with texels as 3D variables

Mesh

Seam
Texture 

Samples

𝑝𝑖

𝑢1
𝑖

𝑢0
𝑖

3D

(x,y,z)

2D

(s,t)

UNIVERSITÀ 

DEGLI STUDI 

DI MILANO


