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METHODOLOGY
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OVER\"EW Input: 1 depth image containing a close-fitting clothed person )F i I | I | I - 5 s

Goal: 3D h h d X X Output: a mesh M (6 890 vertices) representing the corresponding Input 7 f' T

oal: WD SHELS B (SR ClTER I 3D human posed shape in the input camera coordinate frame. f - \
Interest: Several applications, notably for Human representation: SMPL [LMR«15], parametric deformable 000 1l I — SMPL Fitting Output

creating avatars in virtual and augmented mesh M(B,8,y) i1 ' 11 I I

reality applications. B € R'°: human shape parameter

. 8 € R72: pose parameter ) A

Key challenges: Reconstructing both shape 3. P p. Figure 1: overview of the two-steps process

and pose of an actor using a single RGB or v € R%: translation Step 1) Mapping between pixels of a depth input image and a template geometry

RGB-D view with a double U-Net network to predict body part segmentation and to regress

: Step 1 - Dense correspondance normalized canonical vertex coordinates.

Our proposition: a hybrid method benefiting Inputs: 1 depth image + 1 template geometry mesh (fig 2) Step 2) SMPL model fitting to the labelled point cloud.

from the advantages of Deep Learning (DL) Goal: map pixels of the depth image to the template geometry K37y RMV Y AR iTax T

and optimization approaches. i ing). 2 U-
embedding space (6D embedding). 2 U-Net [RFB15] networks Using the template Geometry Embedding, fits the SMPL model to the

1) DL network: estimation of the dense %..DDD 3D point cloud = compute human shape () and pose (8) parameters
correspondence between pixels in a depth Embedding space
image and each vertex of a human --! l:":":l E(6,B, v) = A5Ep(B,B, V)+A959(9)+ABEB(B)
normalized 3 normalized

template. spatial coordinates spatial coordinates

L . - e E,: data term = L2 penalty between pixel i’s 3D point p;, obtained
2) O?t'm'zét'on framework: optimal tz-:implate using the intrinsic matrix and the pixel's depth value, and the
conflg.uratlon (shape a'nd pose) to a'llgn the corresponding vertex v (i), summed over all pixels that belong to the
resulting labeled point cloud with the body region in the segmentation map.
surface of the template.

* Eg body pose prior penalizes joints that bend unnaturally.
Eq(B)=Zexp(6)

*  Eg: shape prior = L2 regularization on the shape parameters
Eq(B) =IIBII%.

A Mg Ag: trade-off weights between the objective function terms.

d ¢

* U-Net 1: depth input image =» body part segmentation (15
template classes). 1 class = 1 color.

RELATED WORK Training with the combination of cross-entropy loss.

(regression branch): body part segmentation * depth

antaining 3 singe person with e iting | [T
containing a single person with close-fitting Training with an L2 loss on the output of the normalized color.
clothing. * Batchsize of 12 using the RMSprop optimizer

=>» Estimate a Pixel-to-Vertex Correspondence: vertex j matching Learning rate of 6.14e-*

pixel i (nearest template vertex in the embedding space) « We run the optimization for 20 iterations

Two groups of DL based methods stand out:

1. Fitting the parametric human shape
model SMPL [LMRx15] to monocular depth RESU LTS
images.
the image to the ones of the parametric
model [JCZ19]. ¢ Standard datasets of 3D close-fitting clothed human shape in
L e . e motion: SURREAL [VRM=x17] (synthetic data), DFAUST
Limitations: objective function criterion is [BRPMB17] (real data) and DanseDB (dancedb.eu) (synthetic

based on very sparse information (dozen of human models fitted to real motion capture data).
joint center positions).

o G O i -0 Evaluation Metric.
’ Reconstruction quality = Mean
@ 4 3 / Average Vertex Error

—

Datasets rendered to simulate depth images of same ) Most errors are close to few
resolutions but with different viewpoints. © \ ’ \ | millimeters (light blue)

Computing the dense correspondence 50,000 training frames and 10,000 testing frames uniformly U . =& y Large errors (red) remain in
between a template body shape SMPL sampled. challenging cases, like side
and a point cloud (computed using the @ > B 01| views and self-occluded areas.
depth image).
= Learned by:

Qualitative results

¢ )
. ) . ) y 73 f(‘ Figure ~ 3:  Spatial distribution of
i) amassing training datasets with SURREAL A 3 )1 | - Jf ;;NQ reconstruction errors on (a) SURREAL, (b)
ground  truth correspondence 4 ¢ P B ¢ / DFAUST and (c) DanseDB.

(D) p \ . = /" Computation time:
i) feature descriptors attached to RGB, DFAUST k N b N f N ‘-’,j e * NN inference stage: about 35ms
depth or point cloud [HYVH20]. ! IA! /\4 * Optimization stage: 6.43s on a NVIDIA 1080Ti GPU.
2 \ ) L“' These results show the robustness of our method to changes in body

Limitations: can fail when the inputs are far { L
from of the training data distribution. DanseD® 1
(@) (b) () @ (e) o poses, shapes, self-occlusions and viewpoints.

Figure 2: Results. (a) Input depth image; (b) Output human part segmentation; (c) ~ Tthe accurate and dense mapping between depth pixels and fitted
Regressed template vertex color; (d) Correspondences between the depth point cloud 3D model topology provides more detailed information compared to

a.nd th? fitted m'esh; (e) .& (f) Output fi.tted mesh visualized from 2 different optimization methods that use only the joint centers.
viewpoints. The point cloud is colored according to the depth values.
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