
ACKNOWLEDGEMENT

Fast and fine disparity reconstruction for wide-baseline camera arrays with 
deep neural networks.

T. BARRIOS , J. GERHARDS, S. PRÉVOST and C. LOSCOS

Université de Reims Champagne-Ardenne, LICIIS, LRC DIGIT, France

RELATED WORK
• Two categories of reconstruction methods

• Traditionnal methods : using image correspondence [3] [5]
superpixel [6] and multi-view consistency based refinement
[5] [6] .
 Good result but quantification error due to fixed number
of hypotheses

• Deep-Learning (DL) as [4]: increase reconstruction accuracy
and reduce quantification error, but suffers from scalability
issues on current GPUs

 Therefore, we chose to retain the DL categorie

• Testing Data: few datasets exist for multi-view camera arrays,
especially with depth/disparity ground truth (GT), but we have:
• Real, rectified FullHD data - Sabater et al. [5] with:𝛿 in [0-300], 4x4 array, baseline of 7 cm
• Virtual FullHD data with disparity GT - Li et al. [4] with:𝛿 in [0-50], 9x9 virtual array.
 As [4] has too little data for our network and [5] has no 
disparity ground truth, we have composed our own dataset for 
training.

OVERVIEW
Our goal is to reconstruct a 3D scene for wide-baseline
arrays.

We propose a pipeline for multi-view disparity
inference from color images of a wide-baseline camera
array using deep neural networks , computing first a low-
scale disparity map before being upscaled guided by
input color images. .
This pipeline allows us to reduce quantification error
compared to state-of-the-art methods, and to process
FullHD images at interactive times.

NETWORK OVERVIEW

RESULTS
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Fig 3: Overview of our 4-part solution: from the input (set of 4 RGB target images {It} 
and reference image (Ir) to the generated disparity map of Ir. (∆ r )

Inputs :
- 1 Reference image : Ir
- Target images : { It }

Outputs :
- 1 Disparity map for Ir

Part 1 - Feature computation and downscaling
Goal: Increase per-pixel information and reduce
image resolution to decreasing inference time.

Principle: Two sub-networks, see [7]:
1) Downscaling of 1/8 per dimension, with 3 sets 

of 2D-convolutional layers with a stride of 2.
2) Six 2D Convolution blocks = .

Convolution+BatchNormalization+LeakyReLU.

Output: 1/8 image with 32 channels for each image
(Ir and It)

Part 2 - Cost volume computation
Goal: Feature computation for each pixel (i, j) and
disparity candidate δ.
Principle: 1) Two-view cost-volume C , between Ir
and It from features f with:

C(Ir,It,i,j,δ) = f(Ir,i,j) −f(It,i + δi,j + δj ), 
δi / δj : horizontal / vertical offset from reference
image Ir to target image It for disparity candidate δ
(see fig. 2). .
2) Global cost-volume Cv as the concatenation of
C(Ir,It,i,j,δ) set. .
Output: 32.|{It}| channels, where Nt is the number
of target images. for each pixel abd disparity
candidate δ ∈ {δmin/8,δmin/8 + 1,..,δmax/8}.

Part 4 - Multi-view disparity refinement
Goal: Refinement by reprojection of 
homologues color to obtain a refined disparity 
map ∆ r 

Principle: 1) For each It, we compute the 
gathered image H, i.e, color values of the 
homologous pixels of Ir on It following the 
coarse disparity map.

2) Apply U-shaped residual 2D convolutional
network [8] on H to obtain the residual
disparity ∆ . All of our layers have half as 
much output channels as [8] .

3) Compute refined disparity map with  
∆ r  = ∆ r 

u + ∆ r 
r.

Output : Refined disparity map.

Part 3 - Cost aggregation and disparity computation

Goal: Attributing a similarity score Sr (i,j,δ) to each
pixel (i, j) and disparity candidate δ and compute
disparity map.
Principle: 1) Apply six 3D Convolution blocks (see
part 1), similar to [7] but with 64 output channels.

2) Final 3D convolution layer, with no
normalization nor activation, 1 output
channel, gives a final score Sr (i,j,δ).

3) Compute with soft argmax function on Sr (i,j,δ)
a downsampled disparity map.

4) Upsample with a bilinear upsampling to
upscale ∆ r

d to input resolution.
Output: Coarse disparity map

Training
Training set: We collected free-to-use 3D models
and pictures which were randomly associated to
create a 3D scene (see fig 4).
• 1 set = 16 FullHD images from 4x4 virtual

camera array with their 16 disparity GT.
• 869 sets generated with 𝛿 in [0-270]
• 1 set gives 4 subsets (4 central views)
• The training loss is computed with both the

coarse and fine output of the network
Iterations are not performed on the full images but
on a random crops of 960 ×540.

Fig 4 : Example from our training dataset, a
reference image (left) and its disparity GT
(right).

Experiment conditions
Dataset: WLF hand designed test dataset of Li et al.

[4].
Reference image : Only the central view.

The original camera array is 9×9, we only took as
target images the top-middle, middle-right, bottom-
middle and middle-left images of the array.

Metrics: bad 0.15 at bad 1 metrics for validation, i.e.,
percentage of disparity values above the bad
threshold.

Hardware :
- CPU : Intel Xeon E5-2630 2.6Ghz
- GPU : NVIDIA Quadro RTX 5000 GPU 16Go

Timing on CPU : for [3], the code provided by the
authors does not run on GPU and for [4], the network
could not compute on GPU to the best of our efforts.

Method Bad 0.15 
(%)

Bad 0.3 
(%)

Bad 0.6 
(%)

Bad 1 
(%)

Time 
(s)

[9] 37.79 5.32 2.90 2.55 600 *
[4] 15.04 7.05 3.95 2.80 40 *
[6] 25.71 10.67 4.15 3.22 1.6 **

Ours 14.09 8.13 4.89 3.30 0.5**

Table 1: Results on the WLF [4] dataset compared to 
state of the art. Computation times were 
measured on (*)CPU, (**)GPU.

Method efficiency compared to state of art
• Inference time is much smaller, 3 times

faster than [6].
• Higher precision measured by the

quantification error (bad 0.15).

Limitations
• Thin and repetitive objects (e.g., vertical bars,

like on a baby’s bed).
• The method requires either adaptation or re-

training for it to be efficient on edge and corner
views of a camera array.

PROBLEM STATEMENT
• Photogrammetric 3D reconstruction of a scene from a

set of color images
 Different approaches: varying on the type of

input (number of images, camera configuration),
the context and the objective

• Context: ReVeRY project, ANR PRCE
Wide-baseline camera array

 Exploitation of 
simplified epipolar geometry principle
to compute disparity [1] (see fig 2)

• Target : 𝛿 in [0-250], 
baseline  of 20 cm

• Goal: Multi-view depth estimation with less fine
errors while maintaining a high resolution of the
images and an interactive computation time.

With a configuration of
rectified, evenly spaced
camera arrays, 3D
reconstruction takes
the form of disparity
reconstruction.

Fig 1: Camera example 
with a 20 cm baseline 

Fig 5: Disparity recovery for a reference image and quantification error (disparity error above
0.15). From left to right column: Disparity ground truth, RPRF approach [3], Chuchvara et al.
[6], Li et al. [4] and our approach.

Fig 2: Horizontal 
and vertical 
disparity 
principle
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