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Fast and fine disparity reconstruction for wide-baseline camera
arrays with deep neural networks
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Abstract
Recently, disparity-based 3D reconstruction for stereo camera pairs and light field cameras have been greatly improved with the
uprising of deep learning-based methods. However, only few of these approaches address wide-baseline camera arrays which
require specific solutions. In this paper, we introduce a deep-learning based pipeline for multi-view disparity inference from
images of a wide-baseline camera array. The network builds a low-resolution disparity map and retains the original resolution
with an additional up scaling step. Our solution successfully answers to wide-baseline array configurations and infers disparity
for full HD images at interactive times, while reducing quantification error compared to the state of the art.

CCS Concepts
• Computing methodologies → Computational photography; 3D imaging; Neural networks; Reconstruction;

1. Introduction

Photogrammetric 3D reconstruction of a scene from a set of color
images is needed by a wide range of applications, like the cultural
heritage, autonomous driving, etc. With rectified, evenly spaced
camera arrays and parallel optical centers, 3D reconstruction takes
the form of disparity reconstruction, i.e., estimating an offset from
each pixel of a view to an adjacent view of the camera array.

Deep learning methods have been widely explored and have
proven to be well adapted to infer disparity from camera pairs
[LJBB20] and light field cameras [HJKG16]. Much fewer solu-
tions were proposed for wide-baseline camera arrays [LWZL21]
which need to be addressed differently since the range of disparity
values are in a different scale. In this paper, we propose a pipeline
for multi-view disparity inference from wide-baseline RGB camera
array using deep neural networks. An upscaling approach on the
disparity maps, guided by input color images, is used to retain the
original definition, processing FullHD images at interactive times.

2. Related work

While many camera configurations and targeted solutions have
been proposed, we focus our review on aligned camera config-
uration, where the disparity concept applies. Several traditional
reconstruction methods were proposed, using image correspon-
dence with Markov Random Fields [Hua19], superpixels [CBG20]
and view consistency-based refinement [CBG20] [SBV∗17]. While
they offer good quality results and, for more recent methods, fast
computation time [CBG20] [SBV∗17], they are often limited by
design, making a fixed number of hypotheses and leading to dis-
parity maps with discrete values and a quantification error in the

output. Moreover, Li et al. [LWZL21] proposed an end-to-end
deep learning solution for both short- and wide-baseline camera
arrays. While increasing reconstruction accuracy this approach suf-
fers from scalability issues on current GPUs.

3. Proposed method

Figure 1: Overview of our network: from the input (set of 4 RGB
images {It} and reference image (Ir) to the final disparity map.

We propose a deep neural network that takes as input one refer-
ence color image Ir and a set of four color images {It} in its neigh-
borhood viewpoints of a camera array (sides, top and bottom). It
outputs a single disparity map associated to the reference image.
Similarly to [KFR∗18], it first computes a low-resolution disparity
map, and then, enhances its resolution to its full size. Our pipeline
consists of four parts (see fig. 1).

Part 1 - Feature computation and downscaling: We use the fea-
ture computation network of [KFR∗18] to downscale the image
while increasing the number of features per pixel.

Part 2 - Cost volume computation: We compute cost features for
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each pixel and disparity candidate by subtracting for each the image
features. Formally, for each pixel (i, j) on Ir and for each disparity
candidate δ in{δmin/8,δmin/8+δstep, ..,δmax/8}, we compute a
two-view cost-volume C between Ir and It from features f :

C(Ir, It , i, j,δ) = f (Ir, i, j)− f (It , i+δi, j+δ j) (1)

with δ = δ(Ir, It ,δ) the vertical/horizontal offset from Ir to It for
disparity candidate δ. We can then define the global cost-volume
Cv by concatenating the 4 two-view feature (one for each It ).

Part 3 - Cost aggregation and disparity computation: This step
aims at attributing a similarity score to each pixel and disparity
candidate. Similarly to [KFR∗18], we used a set of six 3D Convo-
lution+BatchNormalization+ReLU. Each layer has an output of 64
channels. A final 3D Convolution layer, with no normalization nor
activation with a single output channel, gives a final score Sr(i, j,δ)
per pixel and disparity candidate. A first, downsampled disparity
map is then computed by applying the soft argmax function to the
scores. We then upscale it to input resolution disparity map ∆

u
r with

bilinear upsampling before the refinement step.

Part 4 - Multi-view disparity refinement: We first fetch color data
on target images {It} corresponding to the target pixel of the dispar-
ity map Finally, we feed this image to a U-shaped 2D convolutional
network, similar to the one used in [SS20] to compute residual dis-
parity ∆

r
r. Then, we add it to the coarse disparity map in order to

compute the final disparity map ∆r = ∆
u
r +∆

r
r.

Training : We collected free-to-use 3D models and textures on
various websites, which were randomly associated and positioned
to create a 3D scene. From this scene, we take a set of 16 images
from a 4×4 virtual camera array with disparity maps. We generated
aorund 800 sets, each of FullHD resolution. Disparity values range
from 0 to 270. For each set of the training dataset, 4 subsets of been
created for training our network, using the four central views of our
camera array as reference images. To avoid memory issues and to
further increase variation in our dataset, iterations are performed on
random crops of 960×540.The training loss is computed with both
the coarse (Part 3) and fine (Part 4) output of the network.

4. Experiments

4.1. Method efficiency compared to state of the art

We tested our method on the WLF hand designed test dataset of
[LWZL21]. We computed a disparity map only for the center view
of the array. The camera array is 9× 9, so we took the top-center,
center-right, bottom-center and center-left input of the array as tar-
get images. δmin and δmax are set to 0 and 50 with δstep .25.

The results of our method compared to existing methods [Hua19]
[CBG20] [LWZL21] are shown in table 1 and figure 2. Results
from [LWZL21] and [Hua19] are presented using the 9x9 camera
grid while results from [CBG20] are presented using every other
camera of the array because of memory issues. Our results show
that our method outperforms the reconstruction quality of state-of-
the-art methods in several aspects. First, the inference time is much
smaller. Second, our reconstruction is higher in precision measured
by the quantification error (bad 0.15).

Table 1: Results for wide-baseline Light Field compared to state of
the art. Computation times were measured on (*)CPU, (**)GPU.

Method Bad Bad Bad Bad Time
0.15 (%) 0.3 (%) 0.6 (%) 1 (%) (s)

[Hua19] 37.79 5.32 2.97 2.55 600*
[LWZL21] 15.04 7.05 3.95 2.80 40*
[CBG20] 25.71 10.67 4.15 3.22 1.6**

Ours 14.09 8.13 4.89 3.30 0.5**

Figure 2: Disparity recovery for a scene and quantification error
(disparity error above 0.15). From left to right column: Ground
truth, [Hua19], [LWZL21], [CBG20], ours.)

5. Conclusion and future work

We presented a neural network, disparity-based 3D reconstruction
method for wide-baseline camera arrays processing FullHD images
at interactive times. We showed that our method reduces quantifi-
cation error and inference time compared to the state of the art. As
future work, we will adapt the method to generate a disparity map
for each view while maintaining both speed and accuracy.
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