
� Development of a competitive approach to fuse Camera, 
RADAR, and LIDAR data using a single Deep Neural 
Network�

� Construction and publication of a new dataset containing 
Camera, RADAR, and LIDAR information on scenes that do 
not exist in the current datasets, such as pre-collision 
simulations with cars and pedestrians.
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� Unify sensor’s data in a single input tenso�

� Divided the input tensor in a Sx X Sy X Sz gri�

� Each grid cell stores a 8 lenght array prediction 
[class,x,y,z,w,h,l,P�

� The grid cell that has the center of an object will be 
responsible for detecting it.

� x,y,z - center positio�
� w,h,l - dimentio�
� C - Confidenc�
� class - object class


� λx = 20   �
� λy = 5   �
� λz = 20
� λdim = �
� λobj = �
� λnoobj = 1

Ground Truth Prediction

mAP = mean Average Precision

mIoU = mean Intersection over Union

maxIoU = maximum Intersection over Union

Obj. Recognition = Percent of the objects detected by the model which present a minimum IoU

mAP mIoU MaxIoU Obj. Recognition

3D 12.46% 0.25 0.71 68.35%

17.75%2D 0.28 0.84 69.12%

� The model correctly identifies the mean position of fully and partially visible 
vehicles, recognizing around 68% of the vehicles on the street�

� The model approach presents a potential candidate to achieve high performance 
in 3D object detection tasks.

�� Test new architectures and optimize the system's variables (loss weights and grid 
divisions) to extract all the model's potential�

�� Add RADAR data in the input tensor and estimate the velocity of the objects�

�� Build and publish a new dataset to contribute to research in the Self-Driving cars 
field.

Camera-LIDAR fusion

Figure 1: Illustration of the 
model's approaches with Sx=4, 
Sy=2, and Sz=2.

Figure 2: Neural Network Architecture. The 
parenthesis values represent the tensor 
shape in each passage. In the convolutional 
layers, the first value represents the filters, 
and the second represents the kernel size 
and stride.

Figure 3: Two examples of model detection (a,b). The top image is the camera input. The lower images are 
the comparison between the prediction (blue) and the ground truth (green). On the left, we have an 
overview and on the right, a bird-eye-view perspective. 

a) b)

Table 1: Model’s Performance
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The comprehension of the environment and the estimation 
of position and dimension of each object in the scene is of 
great relevance in the Self-Driving field [1].  Methods using 
a fusion of LIDAR, RADAR, and Camera data provide a 
significant result in 3D object detection [2][3]. However, the 
approaches still present a high computational demand and 
response time. 

This Ph.D. project aims to develop a different fusion 
approach seeking reduced footprint, demand for memory, 
and power consumption for real-world Self-driving 
application
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