
� Development of a competitive approach to fuse Camera,
RADAR, and LIDAR data using a single Deep Neural
Network�

� Construction and publication of a new dataset containing
Camera, RADAR, and LIDAR information on scenes that do
not exist in the current datasets, such as pre-collision
simulations with cars and pedestrians.

Introduction

Objectives

Methodology

Loss

Initial Results

Discussion

Future Work

References

Acknowledgements

Multimodal Early Raw Data Fusion for

Environment Sensing in Automotive Applications

José Mario De Martino Alessandro ZimmerMarcelo Eduardo Pederiva

� Unify sensor’s data in a single input tenso�

� Divided the input tensor in a Sx X Sy X Sz gri�

� Each grid cell stores a 8 lenght array prediction
[class,x,y,z,w,h,l,P�

� The grid cell that has the center of an object will be
responsible for detecting it.

� x,y,z - center positio�
� w,h,l - dimentio�
� C - Confidenc�
� class - object class

� λx = 20 �
� λy = 5 �
� λz = 20
� λdim = �
� λobj = �
� λnoobj = 1

Ground Truth Prediction

mAP = mean Average Precision

mIoU = mean Intersection over Union

maxIoU = maximum Intersection over Union

Obj. Recognition = Percent of the objects detected by the model which present a minimum IoU

mAP mIoU MaxIoU Obj. Recognition

3D 12.46% 0.25 0.71 68.35%

17.75%2D 0.28 0.84 69.12%

� The model correctly identifies the mean position of fully and partially visible
vehicles, recognizing around 68% of the vehicles on the street�

� The model approach presents a potential candidate to achieve high performance
in 3D object detection tasks.

�� Test new architectures and optimize the system's variables (loss weights and grid
divisions) to extract all the model's potential�

�� Add RADAR data in the input tensor and estimate the velocity of the objects�

�� Build and publish a new dataset to contribute to research in the Self-Driving cars
field.

Camera-LIDAR fusion

Figure 1: Illustration of the
model's approaches with Sx=4,
Sy=2, and Sz=2.

Figure 2: Neural Network Architecture. The
parenthesis values represent the tensor
shape in each passage. In the convolutional
layers, the first value represents the filters,
and the second represents the kernel size
and stride.

Figure 3: Two examples of model detection (a,b). The top image is the camera input. The lower images are
the comparison between the prediction (blue) and the ground truth (green). On the left, we have an
overview and on the right, a bird-eye-view perspective.

a) b)

Table 1: Model’s Performance

University of Campinas - Brazil
School of Electric and Computer Engineering - Department of Computer Engineering and Automation Center of Automotive Research on Integrated Safety Systems and Measurement Area

Technische Hochschule Ingolstadt - Germany

The authors acknowledge the funding received from The National Council for Scientific and Technological Development (CNPq
141061/2021-9).

The comprehension of the environment and the estimation
of position and dimension of each object in the scene is of
great relevance in the Self-Driving field [1]. Methods using
a fusion of LIDAR, RADAR, and Camera data provide a
significant result in 3D object detection [2][3]. However, the
approaches still present a high computational demand and
response time.

This Ph.D. project aims to develop a different fusion
approach seeking reduced footprint, demand for memory,
and power consumption for real-world Self-driving
application

J. Kim, J. Choi, Y. Kim, J. Koh, C. C. Chung, and J. W. Choi, “Robust Camera Lidar Sensor Fusion Via Deep
Gated Information Fusion Network” IEEE Intelligent Vehicles Symposium,
 Proceedings, vol. 2018-June, no.
Iv, pp. 1620{1625, 2018.

C. R. Qi, W. Liu, C.Wu, H. Su, and L. J. Guibas, “Frustum PointNets for 3D Object Detection
 from RGB-D
Data.” https://arxiv.org/abs/1711.08488, 2018.

L. Wang, T. Chen, C. Anklam, and B. Goldluecke, “High dimensional frustum pointnet for 3d
 object detection
from camera, lidar, and radar” in 2020 IEEE Intelligent Vehicles Symposium
 (IV), pp. 1621{1628, 2020.

[1]

[2]

[3]

