
Fixed-radius near neighbors searching for 2D simulations on
the GPU using Delaunay triangulations
Heinich Porro1, Benoit Crespin1, Nancy Hitschfield2 and Cristobal Navarro3.
1 XLIM UMR CNRS 7252, University of Limoges, France
2 Computer Science Department (DCC), University of Chile
3 Instituto de Informática, Facultad de Ciencias de la Ingeniería, Universidad Austral de Chile

This research was supported by the Patagón supercomputer of Universidad Austral de Chile (FONDEQUIP EQM180042), ANID FONDECYT grants #1211484, #1221457 and the
SOMA-DNS project (ANR-20-CE46-0004).

Source code: gitlab.com/hporro01/mcleap

1. Problem statement

3. Our method

5. Parallel BFS starting from every vertex 6. Experimentation and discussion

References

4. Parallel Delaunay triangulation update

[CHNS18] CARTER F., HITSCHFELD N., NAVARRO C. A., SOTO R.: Gpu parallel simulation algorithm of brownian
particles with excluded volume using delaunay triangulations. Computer Physics Communications 229 (2018), 148–161.
[Gre10] GREEN S.: Particle simulation using cuda. NVIDIA whitepaper 6 (2010), 121–128.
[TWS19] TÖDLING D., WINTER M., STEINBERGER M.: Breadth-first search on dynamic graphs using dynamic
parallelism on the gpu. In 2019 IEEE High Performance Extreme Computing Conference (HPEC) (2019), pp. 1–7.
[Rey87] REYNOLDS C. W.: Flocks, herds and schools: A distributed behavioral model. SIGGRAPH Comput. Graph. 21,
4 (1987), 25–34.

Particle-based techniques are widely
used for simulations in various scientific
fields. We focus our research on
simulations were particles move slowly.
The main computational bottleneck on
those simulation scenarios is related to
the neighbors search. Our contribution is
an improved data structure based on the
work of [CHNS18], which allows to find
the neighbors of any given vertex within a
fixed radius using a BFS approach.

Grid-based approaches are commonly used
to solve this problem in the GPU, because
they are robust and easy to program.
In simulations were particles move slowly,
GPU approaches based on neighbor lists (or
Verlet lists) have been developed too.
GPU Delaunay triangulations have been
used in [CHNS18] to check collisions in
particle systems affected by short-range
forces under small displacements in 2D.

2. Related Work

We propose a GPU acceleration technique for the
fixed-radius near neighbors problem (or FRNN),
using Delaunay triangulation in 2D.
We maintain a Delaunay triangulation of the set of
moving points, using a half edge data structure
adapted to perform parallel flips efficiently in the
GPU, in a similar way as Carter et. al. did in
[CHNS18]. Later we use the data structure to
calculate the neighborhood of every vertex in
parallel.

Fig 1. Fixed radius near neighbors (FRNN)
problem. Fig 2. Grid approach to solve FRNN.

Fig 3. Delaunay approach to solve FRNN.

Fig 6. BFS on a Delaunay defined graph with an increasing frontier vertex array.

In order to update the Delaunay triangulation we first check if the triangulation is still valid after one iteration of the
simulation, and then we check and fix the Delaunay condition. To fix the triangulation we map a thread to every edge
and check if one of the opposite vertices went trough that edge. If that’s the case, we proceed as depicted in figures
4 and 5. Finally, we check the Delaunay condition mapping a thread to every edge, and flipping the ones that have
to be flipped.

Fig 4. If a point goes through one edge, we can flip that
edge in order to update the triangulation.

Fig 5. If a point goes trough more than one edge, we divide the
displacement so that it crosses only one edge per iteration of the
algorithm.

We start the algorithm by allocating an array per vertex called frontier with a
fixed size, where we are going to store all the neighboring vertices that have
been discovered so far. The size is chosen based on the maximum number of
neighbors in the simulation.

To compute the neighborhood, we map one thread to every vertex of the
triangulation, and start keeping track of the current frontier we are growing using
2 pointers to the frontier array. The first frontier is only the vertex we are starting
from (Fig 6. left) and the next one is its 1-ring neighborhood (Fig 6. middle).
Then the next frontiers are computed by iterating over every vertex in the current
frontier, calculating its 1-ring neighborhood, and adding to the frontier array
every point that has not been found before. We stop the search when we find
points that are outside the fixed radius (Fig 6. Right).

The parallelization in our work is different from other parallel BFS approaches,
as for example [TWS19], where the BFS starts only from one vertex. However, it
could be possible to apply some techniques described there and parallelize ever
further the BFS. We could compute the 1-ring neighborhood of every point in the
current frontier and check if it discovers new points in parallel in order to
compute the next frontier. This could be done in the same block so that we could
utilize effectively shared memory to check if a point has been discovered before,
and write to global memory only once per block.

We implemented a 2D version of the Boids model simulation [Rey87] and compared the
performance of our method against the grid-based acceleration described in [Gre10].
Both methods are parallel and run completely on the GPU in double precision. Our
code was tested on Windows and Linux with CUDA 11.2. Table 1 shows the
computation times (in ms) for one timestep, averaged over a simulation of 100
timesteps on two GPUs; NVIDIA RTX3090 (24GB) and NVIDIA A100 (40GB). We
experimented with different configurations with a varying number of particles and a
scale factor controlling the size of the simulation box and the average number of
neighbors inside the interaction radius. These preliminary results show that our
approach is faster than grid based methods in various situations, but more research is
needed to explore other types of particle based simulations.

Table 1: Performance results for RTX3090 and A100 GPUs on Boids simulations.

Fig 7. Delaunay triangulation of boids. From left to right: Initial configuration of 10K boids,
10K boids after 100 iterations and 100K boids.

