EUROGRAPHICS 2022/ J. Hasic and B. Sauvage

Poster

Fixed-radius near neighbors searching for 2D simulations on the
GPU using Delaunay triangulations

H. Porrol, B. Clrespinl ,N. Hitschfeld-Kahler?® and C. Navarro®

I'X1.IM UMR CNRS 7252, University of Limoges, France
2Computer Science Department (DCC), University of Chile
3Instituto de Informatica, Facultad de Ciencias de la Ingenierfa, Universidad Austral de Chile

Abstract

We propose to explore a GPU solution to the fixed-radius nearest-neighbor problem in 2D based on Delaunay triangulations.
This problem is crucial for many particle-based simulation techniques for collision detection or momentum exchange between
particles. Our method computes the neighborhood of each particle at each iteration without neighbor lists or grids, using a
Delaunay triangulation whose consistency is preserved by edge flipping. We study how this approach compares to a grid-based

implementation on a flocking simulation with variable parameters.

CCS Concepts

¢ Computing methodologies — Physical simulation; Massively parallel and high-performance simulations;

1. Problem statement

Particle-based techniques are widely used for simulations in var-
ious scientific fields, for example in material science at different
scales, from classical molecular dynamics to Brownian dynamics,
up to the discrete element method. Two important characteristics
of particle-based techniques are: (i) the main computational bottle-
neck is related to neighbours search, hence optimizing this task is
crucial as it is needed for the computation of collision detection or
momentum exchange between particles; (ii) there is a much larger
need of data processing than storage, making the problem suitable
for a massively parallel solution, for example with GPUs.

In this paper we propose to explore a GPU acceleration tech-
nique for the fixed-radius near neighbors problem (or FRNN), using
Delaunay triangulations in 2D. Unlike traditional approaches based
on cell-linked lists or neighbor lists, we extend the work presented
by Carter et al. [CHNS18], where edge flips are used to preserve the
Delaunay condition for all triangles at each step of the simulation.
Our contributions include an enhanced data structure (see Fig. 1)
for storing additional topological relationships with the Delaunay
triangles, which are maintained consistently when particles move
during the simulation. This structure is then used to compute the
neighborhood of all particles within a fixed radius of every particle
in parallel, and calculate their interactions.

We study the benefits of our implementation on the famous
"Boids" simulation of the flocking behaviour of birds [Rey87] (see
snapshots on Fig. 7 on the accompanying poster). By varying dif-
ferent parameters such as the interaction radius and the number of

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

DOI: 10.2312/egp.20221002

particles, we are able to spot the differences in performance and
memory consumption compared to a grid-based approach.

2. Previous work

Many GPU implementations of FRNN search are already avail-
able in existing simulation software. Cell-linked lists or grid-based
approaches are the most common, sorting the particles placed in
a uniform grid and then exploring the neighborhood in contigu-
ous cells [Hoel4, GKK19]. Such a method is used for example
in [HKG"] for molecular dynamics, as well as in most particle-
based fluid simulations in computer graphics.

In molecular simulations and other scientific fields, an important
feature is the limited displacement of particles at each iteration, ei-
ther because the timestep is very short or because the simulated
motion involves small displacements, as in Brownian dynamics.
Specific GPU approaches based on neighbor lists (or Verlet lists)
have therefore been developed which aim at maintaining, for each
particle, a list of neighboring particles during several iterations of
the calculation [TCCV18]. Delaunay triangulations have also been
applied to track particles affected by short-range forces under small
displacements in 2D [CHNS18]. This type of graph connects all
the particles with its nearest neighbor by an edge, and this property
is used to efficiently check and solve overlaps between particles.
After particles change their position, the Delaunay condition is re-
stored at each iteration by applying edge-flips in parallel [NHKS].
The triangulation is not intended to speed up the displacement cal-
culation; a Verlet list is used to keep neighboring particles within a
given radius for several iterations [CHNS18].

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org



https://orcid.org/0000-0002-9105-0243
https://orcid.org/0000-0003-4923-4679
https://orcid.org/0000-0001-7090-9904
https://doi.org/10.2312/egp.20221002

6 H. Porro & B. Crespin & N. Hitschfeld-Kahler & C. Navarro / Fixed-radius near neighbors searching on the GPU using Delaunay triangulations

Our method uses the same principle of a Delaunay triangula-
tion whose coherence is preserved by edge flips, but this time to
compute directly the neighborhood of each particle without us-
ing neighbor lists. This operation is similar to various graph or
tree traversal problems, for example to determine connected com-
ponents in an undirected graph using DFS (Depth-First Search)
or BFS (Breadth-First) algorithms. Several GPU implementations
were proposed for this problem [TWS19, LWH10], however our
case is different since we have to search, for each vertex of the De-
launay triangulation, the set of vertices reachable within a given
radius.

3. Mesh update

The main idea of our approach is to maintain a consistent Delaunay
triangulation of the particles at each iteration of the simulation, i.e.
when particles are displaced to new locations because of physical
interactions. Different situations can occur after a particle moves.
If the displacement is very small, the Delaunay triangulation may
be still valid and no further action is required. If the particle moves
inside the polygon formed by the points of its one ring neighbour-
hood or cross only one edge, then the Delaunay condition can be
restored using edge flips [NHKS].

The most difficult situation occurs when a particle crosses more
than one edge, as shown on the accompanying poster. In this case
we determine an intermediate position and restore the Delaunay
condition with this smaller displacement. This algorithm is guaran-
teed to stop since we assume that there are no points going through
each other, which is a common constraint in physically-based simu-
lations where particles usually repel each other and are not allowed
to overlap.

Figure 1: Example of triangulation stored in our data structure.
Every edge is represented by 2 half-edges storing their respective
next edge index, keeping a CCW order on every triangle.

4. Breadth first search to calculate the FRNN

We apply a BFS on the Delaunay triangulation by mapping one
thread to every vertex. The upper bound for the number of points to
visit has to be set manually depending on the simulation. We make
use of this maximal value to allocate a fixed amount of memory per
vertex and use it as a buffer to check if a point has been already
visited by the BFS.

The parallelization in our work is different from other parallel
BFS approaches, as for example [TWS19], where the BES starts
only from one vertex. However, it could be possible to apply some
techniques described there and parallelize even further. For exam-
ple we could compute the 1-ring neighborhood of every point in the

current frontier and check if it discovers new points in parallel in
order to compute the next frontier. This could be done in the same
block so that we could utilize effectively shared memory to check
if a point has been discovered before, and write to global memory
only once per block.

5. Experiments

We implemented a 2D version of the Boids model simulation
[Rey87] and compared the performances of our method against
the grid-based acceleration described in [Gre10]. Both methods are
parallel and run completely on the GPU in double precision.The
code is available at gitlab.com/hporro0l/mcleap, and
was tested on Windows and Linux with CUDA 11.2. Table 1 in the
accompanying poster shows the computation times (in ms) for one
timestep, averaged over a simulation of 100 timesteps tested on two
GPUs; NVIDIA RTX3090 (24GB) and NVIDIA A100 (40GB).
Different configurations were applied, with a varying number of
particles and a scale factor controlling the size of the simulation
box and the average number of neighbours inside the interaction
radius.

Acknowledgements

This research was supported by the Patagén supercomputer of
Universidad Austral de Chile (FONDEQUIP EQM180042), ANID
FONDECYT grants #1211484, #1221457 and the SOMA-DNS
project (ANR-20-CE46-0004).

References

[CHNS18] CARTER F., HITSCHFELD N., NAVARRO C. A., SOTO R.:
Gpu parallel simulation algorithm of brownian particles with excluded
volume using delaunay triangulations. Computer Physics Communica-
tions 229 (2018), 148-161. 1

[GKK19] GRoOSS J., KOSTER M., KRUGER A.: Fast and Efficient Near-
est Neighbor Search for Particle Simulations. In Computer Graphics and
Visual Computing (EG UK) (2019). 1

[Grel0] GREEN S.: Particle simulation using cuda. NVIDIA whitepaper
6 (2010), 121-128. 2

[HKG*] HERMOSILLA P., KRONE M., GUALLAR V., VAZQUEZ P.-
P., VINACUA A., ROPINSKI T.: Interactive gpu-based generation of
solvent-excluded surfaces. The Visual Computer 33, 6. 1

[Hoel4] HOETZLEIN R. C.: Fast fixed-radius nearest neighbors: inter-
active million-particle fluids. In GPU Technology Conference (2014),
vol. 18, p. 2. 1

[LWH10] LuoL., WONG M., HWU W.-M.: An effective gpu implemen-
tation of breadth-first search. In Design Automation Conference (2010),
pp. 52-55. 2

[NHKS] NAVARRO C., HITSCHFELD-KAHLER N., SCHEIHING E.: A
parallel gpu-based algorithm for delaunay edge-flips. In The 27th Euro-
pean Workshop on Computational Geometry, EuroCG. 1,2

[Rey87] REYNOLDS C. W.: Flocks, herds and schools: A distributed
behavioral model. SIGGRAPH Comput. Graph. 21,4 (1987). 1,2

[TCCV18] TRAN C. T., CRESPIN B., CERBELAUD M., VIDECOQ A.:
Colloidal suspension by srd—md simulation on gpu. Computer Physics
Communications 232 (2018), 35-45. 1

[TWS19] TODLING D., WINTER M., STEINBERGER M.: Breadth-first
search on dynamic graphs using dynamic parallelism on the gpu. In
2019 IEEE High Performance Extreme Computing Conference (HPEC)
(2019), pp. 1-7. 2

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.


gitlab.com/hporro01/mcleap

