
Rendering 2D vector graphics on mobile GPU Devices
Harish Kumar1, Anmol Sud1

1{harkumar, sud}@adobe.com

Start

Coverage Fragment?

Compute Coverage

Pixel Memory

Pixel Memory

2. Multiply coverage to color

1. Clear pixel memory.
2. Pixel Memory State = None.

2. Pixel Memory State = Fill.

No

Discard fragment.

Discard fragment.

None

Fill

Fill

Yes

Fill

None

AA

2. Pixel Memory State = AA.

1. Write union of AA to coverage

2. Pixel Memory State = AA.

1. Write union of AA to coverage

2. Pixel Memory State = AA.

NoneAA

AA

Introduction Results

ReferencesRelated Work

CPU Triangulation Fragment Shader State Machine
Method

GPU Framebuffer States in Render Pass

Designers and artists world-wide rely on vector graphics to design
and edit 2D artwork, illustrations and typographic content.There is a
recent trend of vector graphic applications moving to mobile plat-
forms. These vector applicationsare not read only but also requires
real time vector editing experience.

Our solution builds upon standard stencil then cover paradigm and
develops an algorithm targeted for GPUs based on tile based deferred
rendering architecture. Our technique provides an efficient way to
use signed distance based anti aliasing techniques with ’stencil then
cover’ paradigm. Our solution builds over the stencil then cover
method but solves the perfomance issues due to multisampling, two
render passes for each vector objects and also allows batching of
vector objects for optimal performance. Mobile GPUs (tile-based
GPUs) allows reading current pixel memory without any perfor-
mance penalty (texture barriers or different draw calls). This tech-
nique exploits this fundamental property of mobile GPUs.

(1)

P

Q

R

S

T

U
xx

xx

x

x

(2) (3)

(4) (5) (6)

Color Triangle Control Triangle Interior Triangle Overlapping Control
and Interior Triangle

1. Input vector shape 2. Cubic Beziers approximated by Quadratic Beziers 3. Color Triangles 4. Quadratic
Bezier Control Triangles 5. Interior Polygon Triangulation 6. Total Coverage triangles and color triangles

Vertex Buffer Layout for drawing multiple paths in a single draw call

[KSST] KOKOJIMA Y., SUGITA K., SAITO T., TAKEMOTO T.: Resolution
independent rendering of deformable vector objects using graphics
hardware. SIGGRAPH ’06. doi:10.1145/1179849.1179997. 1

[NH] NEHAB D., HOPPE H.: Random-access rendering of general vector
graphics. SIGGRAPH ’06. doi:10.1145/1409060.1409088. 2

[Ope] URL: http://www.glprogramming.com/red/
chapter14.html. 2

Chart 1: First frame draw comparison (w/o cache) Chart 2 : Frame redraw comparison (with cache)

Conventionally, vector objects are rendered with either stencil then
cover techniques or tessellation based methods. Stencil then cover
methods rely on multisampling for antialiasing but multisampling in-
creases memory usage and impacts performance due to per sample
shading with transparency and blend modes applied over artwork.
Tessellation based methods on the other hand generate tight non
overlapping triangles that confines the path geometry and generate
spread around the control triangles to generate extra pixels for an-
tialiasing. This tessllalation process runs on CPU and performance
intensive leading to slow editing performance.

Fragment shader reads current values in frame buffer (pixel memory)
to decide the state changes in pixel memory for current fragment. On
mobile devices, reading curent pixel memory from framebuffer is free
of performance cost using ‘Framebuffer Fetch’. Our tecnique uses a
single render pass to write coverage and color values and clears the
coverage buffer in same render pass. This allows to batch and render
multiple vector objects n a single render call leading to significant per-
formance gains.

Artwork quality rendered using our technique

