

Multi-Scale Analysis of Point Cloud

Claudio Mura² Nicolas Mellado¹ Loïc Barthe¹ Thibault Lejemble¹ ¹IRIT, CNRS, Université de Toulouse ²Department of Informatics, University of Zurich

Introduction

Point-sampled surfaces often exhibit multi-scale properties due to the high variation between their feature size. Traditional multi-scale shape descriptors usually characterize a point and its close neighborhood of varying sizes. We propose to add a spatial regularization to these descriptors and apply the following general approach to two applications.

Related Works

Algebraic Point Set Surfaces (**APSS**) [1] Scale of analysis : neighborhood radius $t \in \mathbb{R}^+$ [2]

General approach

- Multi-scale shape characterization
- Extraction of stable features across scales

Mean curvature

I. Feature Plane Extraction

1. Region growing at several scales Region grows from \mathbf{p}_i to \mathbf{p}_j if $angle(\mathbf{n}_i, \mathbf{n}_j) < \theta$

II. Feature Line Extraction

SHREC'19: Feature Curve Extraction on Triangle Meshes 3

1. Curves generation at several scales

 $\mathbf{q}_{k+1} = proj(\mathbf{q}_k + \Delta \mathbf{v}_2)$

minimal principal curvature direction at \mathbf{q}_k **V**₂ proj() projection operator on the APSSintegration step Δ

Independent segmentations

2. Hierarchical graph representation

Region at one scale \equiv node at one level Connection of nodes at successive scales **Similarity** : number of shared points between regions

3. Persistence analysis

Valley and crest lines

2. Accumulation vote

3. Feature lines extraction

Extraction of persistent regions across scales

Persistent diagram

Some of the most persistent regions

Sum of votes

Individual lines

References

[1] Gaël Guennebaud and Markus Gross. Algebraic point set surfaces. In ACM Transactions on Graphics (TOG), 2007.

[2] Mark Pauly, Richard Keiser, and Markus Gross. Multi-scale feature extraction on point-sampled surfaces. In Computer graphics forum (CGF), 2003.

[3] Elia Mosco Thompson et al. Shrec'19 track : Feature curve extraction on triangle meshes. In Eurographics Workshop on 3D Object Retrieval (3DOR), 2019.