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Figure 1: Left: Region growing performed from low to high scale. Right: Four of the most persistent components.

Abstract

Surfaces sampled with point clouds often exhibit multi-scale properties due to the high variation between their feature size.
Traditional shape analysis techniques usually rely on geometric descriptors able to characterize a point and its close neighbor-
hood at multiple scale using smoothing kernels of varying radii. We propose to add a spatial regularization to these point-wise
descriptors in two different ways. The first groups similar points in regions that are structured in a hierarchical graph. The
graph is then simplified and processed to extract pertinent regions. The second performs a spatial gradient descent in order to
highlight stable parts of the surface. We show two experiments focusing on planar and anisotropic feature areas respectively.

1. Introduction

3D acquisition techniques are very popular for modeling our en-
vironment because of their affordable price and their ease of use.
Most of the acquisition processes, such as laser scanner and pho-
togrammetry, generate an unstructured point cloud sampling the
scanned surface. The surface is unknown and the point cloud needs
to be analyzed for performing tasks such as shape retrieval, object
classification and interactive visualization to name a few.

As the capabilities of scanning devices increase, point cloud data
become more complex. The resolution and the accuracy are such
that it is possible to scan an entire building at the millimeter scale,
producing several millions, or even billions, of samples. Data con-
tains thin details as well as coarser shapes depending on the scale
at which we observe it. This variation in feature size raises the need
of multi-scale analysis methods that are able to characterize the ge-
ometry at different levels of scale.

Multi-scale shape analysis Inspired by the scale-space theory in-
troduced in computer vision [Lin94], multi-scale analysis has been
applied to 3D data [PKG03, MGB™12]. The point set is convoluted
by a smoothing operator of progressively increasing size. While

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

DOI: 10.2312/egp.20191047

these methods are efficient for local geometry processing, they are
intrinsically local and therefore lack of global or regional regular-
ization.

A multi-scale representation of a point cloud can also be ob-
tained by computing a super-segmentation and incrementally merg-
ing groups of segments until obtaining a coarse, over-simplified
representation [AP10, FLD18]. However, the generation of candi-
date segmentations is based on greedy merge operations, which is
likely to miss intermediate representations that are meaningful in
the context of a high level, multi-scale analysis.

2. Overview

Our goal is to extend point-wise multi-scale surface descrip-
tors [MGB*12] to a regional level of analysis. We base our work on
one of the Moving Least Squares (MLS) point-set surfaces frame-
work [GGO7]. This method locally fits an implicit surface in a
scalar field s : IR> — IR computed from the neighboring samples
of a point. The radius ¢ € IR of the spherical neighborhood defines
the scale of analysis.
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In order to add a spatial regularization, we propose two differ-
ent approaches. The first one (Section 3) groups similar samples
in regions at different scales using a similarity function based on
the scalar field s. The segmentations performed at different level
of scale are then structured in a graph that is simplified for only
extracting pertinent planar regions.

The second solution (Section 4) is to progress through the three
dimensional space by following the direction that locally maximize
the stability of s at each iteration. The flow lines obtained by re-
peating this procedure starting from multiple points highlight stable
anisotropic parts of the point clouds.

3. Segmentations graph

The goal of the segmentation is to evolve from a local point-wise
description toward a more high level scope of analysis by group-
ing similar points together. We perform independently N segmen-
tations at increasing scales {#y...ty—1} and we represent them in
a hierarchical graph encoding similarities between regions at con-
secutive levels of scale. Finally, a subset of region are extracted by
performing a topological graph clustering algorithm.

Segmentations The segmentation at one scale ¢ € IR is done with
a seeded region growing using the k-nearest neighbor graph of the
point cloud. The gradient dxs of the MLS scalar field s, computed at
scale 7, is used to estimate surface normal vectors. A region grows
from one seed sample to its neighbors if the deviation between their
estimated normal is below an angular threshold 6. To favors planar
regions, the seeds are chosen with the minimal absolute values of
principals curvatures obtained from 0Zs. Figure 1 shows 3 segmen-
tations at different level of scale.

Hierarchical Graph Each of the N segmentations gives rise to
one level in the graph. A region obtained at scale ¢; is represented
by one node at the jth level in the graph, which defines a bijection
between nodes and regions. The connection between the nodes is
done between two consecutive scales 7; and ¢, 1. Two nodes are
connected by an edge if the intersection between their underlying
point sets is not empty. Such graph encodes the similarity between
pair of regions at consecutive levels.

Topological Simplification The graph is finally filtered in order to
extract only a reduced set of the numerous regions. Inspired by the
persistence theory in computational geometry [ELZ00], we com-
pute persistent components from the hierarchical graph. In our con-
text, a component is defined by a sequence of nodes across scales
from a birth and to a death level of scale.

Atinitialization, one component is born for each node of the low-
est level of scale #y. Then, each component propagates from node to
node toward the highest level of scale #y_ by favoring nodes with
the highest number of shared points. At the end, every node is asso-
ciated to one single component. Components can be represented by
their birth and death levels in a 2D persistence diagram [ELZ00].
Finally, a thresholding on the persistence value of components per-
mits to extracts principal components that are stable across scales
as illustrated by Figure 1.

4. Flow Lines

In order to emphasize stable anisotropic regions, we compute 3D
curved lines following the direction that locally maximize the sta-
bility of the sampled geometry. This gradient descent can be seen
as the integration of path lines within a 3D vector field. The vector
field is computed as the minimal principal curvature direction of

the scalar field s.

Figure 2: Flow lines
at two different scales

A subset of sampled points are se-
lected from the input point cloud us-
ing Poisson sampling. They are used
as starting points to generate the flow
lines. Similarly to the segmentations
performed at multiple level of scale,
the set of flow lines can be obtained at
different level of scale. Figure 2 shows
the result on a twisted cable where
the lines highlight either the fine fibers
at low scale or the whole cable at a
higher scale.

5. Future Work

We plan to investigate two main points. The single-scale gradient
descent (Section 4) could be improved by adapting the scale as
measure as a path line is generated. This would results in a scale-
space gradient descent avoiding the choice of a specific subset of
scales. Finally, the graph obtained from the multi-scale segmenta-
tion (Section 3) seems to include lots of redundancy. Similar pat-
terns in the graph corresponding to repetitive features on the 3D
surface may be extracted using the graph topology only.
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