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Abstract

We implement adaptive frameless rendering (AFR) on NVIDIA OptiX, a real-time ray tracing API taking advantage of NVIDIA
GPUs including their latest RTX functionality. OptiX is a parallel system that sits on top of NVIDIA’s better—known CUDA
API. AFR has sampling and reconstruction processes that use information distributed across both space and time, aiming to
generate low-latency updates. Previous AFR implementations were sequential prototypes. Our parallel prototype is allowing us
to confront several unique challenges, including closed loop control of both sampling and reconstruction, and load balancing

between CPU and GPU.
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1. Introduction

As interest in and demand for virtual reality, augmented reality and
large displays grows, so does the need for adaptive, low-latency
rendering. However, real-time rendering continues to be dominated
by non-adaptive double buffering, which avoids temporal image
“tears” by buffering images offscreen, and ensuring that every pixel
is at least two frames old. Some recent research tries to minimize
latency in virtual and augmented reality by sidestepping the double
buffering bottleneck [LPH16] [ZFH14].

Frameless rendering [BGE94] eliminates frames completely. It
renders random pixels directly to the display rather than any off-
screen buffer, using the latest input available. The result is a much
more up—to—date but temporally incoherent image, with the inco-
herence visible during change as “pixel dust” and blurring. To min-
imize these artifacts and improve rendering quality, adaptive frame-
less rendering [DADO5] (AFR) concentrates samples and shapes
reconstruction according to patterns of spatio—temporal change.
Their method improved rendering accuracy significantly. Neverthe-
less, these projects were ahead of their time: they were only imple-
mented as sequential, non—parallel prototypes; and in the following
years, research and development focused on improvements readily
available in more traditional framed rendering environments.

With the renewed interest in low-latency rendering, we are
building a real-time, parallel version of AFR. We are implementing
it using NVIDIA’s OptiX ray tracing API [PSA10], a parallel API
that sits on top of NVIDIA’s CUDA API and takes advantage of its
latest RTX ray tracing hardware.
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2. Real-Time AFR Challenges

As originally described, AFR uses two parallel sampling and
reconstruction subsystems, potentially introducing race condi-
tions. However, the original authors’ prototypes were sequential
[DADO5], sidestepping these problems. OptiX renders rays in par-
allel, introducing the potential for additional parallel conflicts. It
also supports distribution of computation across both the CPU and
the GPU. Below, we describe these problems in more detail, along
with our current solutions:

e CPU/GPU distribution. In AFR, adaptive sampling is controlled
through a dynamically maintained hierarchy defining a tiling of
the current space-time sample buffer (deep buffer). AFR strives
to ensure that all tiles contain a roughly equal amount of color
change; each of these tiles is then sampled at the same rate. Large
tiles emerge over image regions with fewer spatio—temporal
edges and they are sampled at lower rates. Because hierarchies
are difficult to maintain on GPUs, we currently maintain the hi-
erarchy on the CPU, and all other AFR components on the GPU.
There have been a few hierarchy implementations on the GPU
previously; we plan to experiment with these in the future in the
effort to improve rendering speed and reduce latency.

e Farallel conflicts between sampling and reconstruction. To avoid
any race conditions in accessing the deep buffer, our first imple-
mentation separated sampling and reconstruction into temporally
disjoint phases: sampling continues until a frame must be re-
constructed, then halts for reconstruction, then sampling restarts.
Our current implementation runs sampling and reconstruction in
parallel; early results show improvements in speed and quality.

o Farallel conflicts in sampling. Because OptiX samples rays in
parallel, conflicts can occur when two threads access the same
pixel. We avoid this with a simple locking scheme, threads that
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Sampling
Threads Sampling Reconstruction Total  Total FPS
256x64 6.94 34.44 41.38 24.17
256x85 8.25 35.92 44.17 22.64
256x128 10.6 37.21 47.81 20.92
256x256 20.66 38.38 59.04 16.94
256x512 36.69 38.04 74.73 13.38

Table 1: Average sampling and reconstruction time in a scene with
motion. The number of reconstruction threads is 256x256, time is
measured in millisecond (ms), and FPS is 1000 divided by time.

find a pixel locked simply sample a different pixel. Preliminary
results indicate this is effective in maintaining rendering speed.

o Avoiding parallel conflicts and barriers in reconstruction. When
sampling and reconstruction were parallel, samples may change
as a filter’s support is being traversed for reconstruction. Our
current implementation does not use locking to avoid these in-
consistencies. Preliminary results are that while these inconsis-
tencies create minor artifacts, they may be compensated for by
reduced latency. We have also begun experimenting with con-
tinuous reconstruction, with different image regions updated at
different times. Splatting-based reconstruction will require spe-
cial care, since it records temporally weighted samples for later
reconstruction.

3. Preliminary results

Figures 1 and 2 show experiments demonstrating the quality of our
output. In both experiments, during moderate view motion, we re-
construct imagery with 256x256 image resolution, using tempo-
rally disjoint sampling and reconstruction. Figure 1 shows the ef-
fect of increasing sampling threads. Edges sharpen meaningfully
until there is one thread for every pixel. Table 1 shows the corre-
sponding effect on rendering speed, which declines as additional
threads are allocated to the render, and introduces a tradeoff be-
tween visual and temporal quality. These times are measured on
a Windows laptop, equipped with an NVIDIA 950M. Figure 2 is
a comparison between our prototype and a non-adaptive frame-
less renderer. We use 256x64, 256x128, 256x256 sampling threads
for both renderers. The non-adaptive renderer creates deceptively
sharp imagery, and leaves many mismatching older samples in each
frame. Our adaptive prototype includes motion blur, and removes
older samples, producing coherent and more up-to-date imagery.

4. Conclusion and Future Work

This paper describes an early, real-time implementation of adap-
tive frameless rendering on Nvidia OptiX, and the design chal-
lenges and choices we made in our current implementation. Our
future work will focus on parallelizing sampling and reconstruc-
tion, and moving more computation to the GPU to avoid bandwidth
and communication overhead. Ultimately, we plan to integrate our
system into VR and AR for low-latency display, with the aid of
novel displays permitting partial updates.

Figure 1: Varying the number of sampling threads, to render a
scene with moderate viewpoint motion. upper left: 256x64; upper
mid: 256x85; upper right: 256x128; lower left: 256x256; lower
mid: 256x512

Figure 2: Comparing our adaptive frameless rendering prototype
(bottom) to a non-adaptive frameless renderer (top). The result of
using differing numbers of sampling threads are shown from left to
right: 256x64, 256x128, 256x256
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