Introducing a Modular Concept for Exchanging Character Animation Approaches

F. Gaisbauer, P. Agethen, T. Bär & E. Rukzio

Motivation

- Character animation is essential for many branches such as gaming industry and automotive manufacturing
- There are various heterogenous approaches which are specialized on certain aspects (e.g. path planning)
- Motion blending is widely used and provided by most common gaming engines and simulation platforms
- Specialized approaches such as recent AI-methods or physics based simulations are tightly embedded within tailored platforms
- ➤ **High porting efforts** to **incorporate** novel approaches
- > Currently no possibility to couple heterogenous character animation systems within a common environment
- > No comprehensive simulation using distinct approaches

Approach

With the novel concept, the **exchange** of **heterogeneous character animation approaches** will be **simplified** by using a **standardized interface** build upon the **Functional Mock-up Interface** (FMI) approach [1].

- FMI allows to couple heterogenous simulations in a different context than motion (e.g. production plants)
- Extension of the FMI standard to exchange character animation approaches
- Encapsulation of heterogeneous character animation systems by so called Motion Model Units (MMUs)
- Generation of natural and continuous motions by using a co-simulator which sequences the respective MMUs

Figure 1: Illustration of the basic concept. Individual animation systems are encapsulated by MMUs and sequenced by a co-simulator.

Motion Model Unit

The core components of the proposed concept are the so called **Motion Model Units (MMUs).** These units **encapsulate** the specific **character animation systems** via **defined interfaces**. The main principles for the execution are listed below:

- Initially, the context and motion description are set
- Afterwards, the "do step"-routine is cyclically executed by the co-simulator until the motion is finished
- ullet The **next character pose** is computed within this routine by the **internal algorithm** of the **MMU**
- Subsequently, the computed result is provided as output of the respective MMU

Figure 2: Input and output interfaces of the proposed Motion Model Units.

Benefits

By utilizing a **standardized exchange format** for character animation approaches, there are various **benefits** for the **developers**, as well as for the **end-users**:

- **Reduced porting efforts** for incorporating novel approaches
- Combination of approaches to simulate complex behaviors in a common environment
- Reusability of already existing methods
- Benchmarking of diverse systems in a common framework
- New market for distributing the MMUs

Figure 3: Decomposition of a complex task into several distinct MMUs

Results

- Combination of a statistical motion synthesis [3], an animation based system [2] and a specialized tool for path planning in a common environment by using the novel MMU approach
- Overall, the system was able to produce natural motions, while combining the benefits of the distinct approaches

