Real-Time Video Texture Synthesis for Multi-Frame Capsule Endoscopy Visualization

Overview

- ▶ A common way to shorten the review time of wireless capsule endoscopy is to display multiple video frames simultaneously, side by side.
- Capsule images are nearly circular. Displaying multiple frames requires hole-filling for easier viewing.
- ▶ We present a new practical method for realtime video texture synthesis to fill-in such
- Our method is a simplification of Poisson image blending.

Output

References

- ▶ Peleg S.: Elimination of seams from photomosaics (1981).
- ▶ Perez P., Gangnet M., Blake A.: Poisson image editing (2003).
- ► Farbman Z., Hoffer G., Lipman Y., Cohen-Or D., Lischinski D.: Coordinates for instant image cloning (2009).

Method

Figure: Texture synthesis of a corner. Left: After warping the image I, we want to fill the empty region F. Middle: First we compute the Δ -map. Right: the fill-in is $F = P + \Delta$, where P is a fixed close image patch. The Δ -map is constructed in-place before adding P.

Algorithm 1: Edge-hiding between image and placed patch

Input: Warped image I, a patch P to place in the fill area F **Output**: Δ -map and filled region $F = P + \Delta$ (as in Fig. above)

$$\Delta(i,j) \longleftarrow 0$$

 $\mathbf{return}\ F = P + \Delta$

Compute the distance transform D for each pixel in F from the boundary of I

foreach pixel $(i, j) \in F$ in increasing order of D(i, j) **do** if D(i, j) < 2 then $m(i,j) = mean(I(i_1,j_1))$ such that $(i_1, j_1) \in I, |i - i_1| \le 1, |j - j_1| \le 1$ $\Delta(i,j) = m(i,j) - P(i,j)$ else $m(i, j) = mean(\Delta(i_1, j_1))$ such that $|i-i_1| \le 1, |j-j_1| \le 1, \Delta(i,j) \ne \emptyset$ $\Delta(i,j) = m(i,j) \cdot d$, where d is a decay factor end end

$I_{0,6}$	$I_{1,6}$	$I_{2,6}$	$I_{3,6}$	$I_{4,6}$	$I_{5,6}$	$I_{6,6}$
$I_{0,5}$	_		_		_	_
$I_{0,4}$	$I_{1,4}$	$I_{2,4}$	$I_{3,4}$	$I_{4,4}$	$I_{5,4}$	$I_{6,4}$
$\Delta_{0,3}$	$I_{1,3}$	$I_{2,3}$	$I_{3,3}$	$I_{4,3}$	$I_{5,3}$	$I_{6,3}$
$\Delta_{0,2}$						
$\Delta_{0,1}$	$\Delta_{1,1}$	$\Delta_{2,1}$	$I_{3,1}$	$I_{4,1}$	$I_{5,1}$	$I_{6,1}$
$\Delta_{0,0}$	$\Delta_{1,0}$	$\Delta_{2,0}$	$\overline{\Delta_{3,0}}$	$I_{4,0}$	$I_{5,0}$	$I_{6,0}$

Figure: Computation of the Δ -map.

In the first stage, we set Δ for the boundary pixels (grayed) so that the addition of the image patch will not create a strong edge. For example, $\Delta_{2,1} = \frac{1}{3}(I_{2,2} + I_{3,2} + I_{3,1}) - I_{5,4}$. In the second stage, we propagate the Δ values inwards, e.g. $\Delta_{1,0} = \frac{1}{4}(\Delta_{0,1} + \Delta_{1,1} + \Delta_{2,1} + \Delta_{2,0}) \cdot d.$