
EUROGRAPHICS 2016/ L. Magalhães and R. Mantiuk Poster

Tonal Art Maps with Image Space Strokes

László Szécsi, Marcell Szirányi and Ágota Kacsó

Abstract
This paper presents a hybrid hatching solution that uses robust and fast texture space hatching to gather stroke fragments, but
fits stylized brush strokes over those fragments in image space. Thus we obtain a real-time solution that avoids the challenges
associated with hidden stroke removal in image space approaches, but allows for the artistic stylization of strokes exceeding the
limitations of texture space methods. This includes strokes running over outlines or behind occluders, uniquely random strokes,
and adherence to image space brush properties.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.3]: Line and Curve Generation—

1. Introduction and previous work

Hatching is one of the basic artistic techniques that is often emu-
lated in stylistic animation. Strokes should be uniform as drawn by
the same brush or pencil, but also unique. Overdrawn lines crossing
object contours often occur.

Several works proposed the application of seeds attached to ob-
jects [Mei96, USSK11]. Seeds are extruded to textured triangle
strips representing hatching strokes in image space. Compositing
these with three-dimensional geometry is challenging: as extruded
hatching curves do not strictly adhere to surfaces, depth testing
them against triangle mesh objects must be using heavy bias and
smooth rejection to avoid flickering.

The visibility problem is solved robustly in texturing-based ap-
proaches [LKL06], where the hatching pattern is drawn on object
surfaces. Uniform screen-space hatching density can be achieved
using different level-of-detail textures, either pre-drawn as Tonal
Art Maps (TAM) [PHWF01], or procedurally defined as Recursive
Procedural Tonal Art Maps (RPTAM) [SS14]. Deviating from a
hand-drawn style, strokes can appear clipped when crossing over to
less densely hatched areas, or at object silhouettes and parametriza-
tion discontinuities.

2. Proposed method

In this paper we propose Tonal Art Maps with Image Space Strokes
(TAMISS), a hybrid technique that combines the robust visibility
testing and density control of TAM or RPTAM with the stylistic
freedom of image space stroke extrusion (Figure 1). The idea is to
assign unique IDs to all TAM strokes, perform rasterization of sur-
faces with TAM, producing fragments marked with stroke IDs, and
fit a curve on each set of fragments sharing the same ID. The curves
can be extruded to image space strokes in proper style, while visi-
bility and density control has already been taken care of by TAM.

Figure 1: TAMISS allows overdraw and eliminates clipping.

2.1. Method outline

Figure 2 depicts the algorithm workflow. We need TAM textures
storing stroke IDs instead of colors. In the first, fragment gathering
phase, surfaces are rasterized with TAM. For every surface frag-
ment, as many stroke fragments are generated as there are overlap-
ping strokes. All fragments store a globally unique stroke ID. In
the next, summation step, the fragments are aggregated by ID into
descriptors. Finally, curves are fit on these descriptors, extruded to
textured triangle strips, and rendered to the frame buffer.

fragment

gathering

regressor

computation

fitting and

extrusion

append/consume

fragment buffer

accumulator

texture

frame

buffer

stroke

texture

coverage

texture

triangle mesh

model

OLS

CGM

TAM

blending

Figure 2: Pipeline for the proposed method.

c⃝ 2016 The Author(s)
Eurographics Proceedings c⃝ 2016 The Eurographics Association.

DOI: 10.2312/egp.20161046

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/egp.20161046


Szécsi et al. / Tonal Art Maps with Image Space Strokes

2.2. Regression

We rasterize the surfaces with appropriate TAM or RPTAM shaders
to gather stroke fragments. Fragments are stored with their xi, yi
screen space coordinates, and ti values. Parameter ti specifies where
the fragment appears on the stroke.

Given n fragments of a stroke, we need to find coefficients of the
curve equation. We use cubic curves, so the parametric curve equa-

tion has the form r(t) =
(

cT
x · t,cT

y · t
)
, with t =

(
1, t, t2, t3

)T
,

where cx and cy are column vectors of coefficients.

Finding cx and cy are linear regression problems, that we can
solve using the Ordinary Least Squares method. Using the explicit
formula by Hayashi [Hay00], we obtain the linear system

b = A · c, with A =
n−1

∑
i=0

ti · tT
i , ti =

(
1, ti, t

2
i , t

3
i

)T
, (1)

with either b=∑n−1
i=0 ti ·xi and c= cx, or b=∑n−1

i=0 ti ·yi and c= cy.
Terms in sums correspond to stroke fragments.

Solving the system for c by directly inverting A is feasible, but
it is not the most efficient or stable option, as A may be singular or
close to singular. As A is positive definite, the iterative conjugate
gradient method [NW06] (CGM) can be applied, which delivers
the pseudo-inverse solution even for singular matrices. using only
four multiplications of 4×4 matrices and a few four-element vector
operations, making it efficient and easy to implement on the GPU.

The stroke may be only partially visible. We find the useful pa-
rameter range of the curve as [tmin, tmax] = [mini ti,maxi ti] .

3. Implementation

The solid geometry depth is laid down first, so that only visible sur-
faces are rendered. The TAM or RPTAM implementation needs to
be modified slightly to stream fragments into a buffer. This buffer
of fragments can be rendered as a vertex buffer of point primitives.
The vertex shader positions the point primitives by ID, sending
them into a target buffer with blending. However, as IDs are global
on all surfaces and detail levels, much more IDs are possible than
the size of the target buffer. Double hashing can be used to map IDs
to texels. To allow full parallelism, the hash table is read-only dur-
ing a frame, but a new one is built by writing routed fragment IDs
to an additional render target. It is possible—if rare—that multiple
newly appearing strokes try to claim the same empty slot, but that
only means that some strokes are delayed by a frame.

After rasterization, blending is used to add ti · tT
i , t ·xi, and t ·yi to

the texels. Values tmin and tmax are found with maximum blending.

In the final pass, dataless point primitives are rendered for ev-
ery texel of the aggregate texture. A geometry shader solves the
regression equations using CGM, and extrudes the curve to a trian-
gle strip in screen space. Any additional stylization like per-stroke
randomization can be performed here.

3.1. Results and conclusions

We measured performance on an NVIDIA GeForce GTX 780, at
1920× 1200 full-screen resolution (Table 3.1). Compared to sin-
gle pass texturing with RPTAM, TAMISS takes about five times as

△ ∼ OLS CGM E&R
27k 1k 3.06 0.04 0.11
27k 4k 2.96 0.19 0.32
90k 4k 2.86 0.31 2.01
193k 4k 2.78 0.23 0.51
193k 16k 2.88 0.91 2.04

Table 1: Performance on different scenes (with the number of tri-
angles and hatching strokes specified) at 1920× 1200. Rendering
times are given in ms for regressor aggregation (OLS), cubic curve
fitting (CGM), and final stroke extrusion and rendering (E&R).

long, but performs still well over 100 FPS in full screen. The most
expensive operations are fragment aggregation, and final stroke ras-
terization. The solution of the regression equations with CGM is
negligible. For more complex scenes, the overhead remains con-
stant. Performance depends heavily on the number of strokes, but
32k strokes in a frame are always sufficient.

While higher order fitting is certainly possible, even a quartic so-
lution would need approximately doubled computation and storage
requirements. We think this would be for no practical gain, as the
underlying shape is adequately represented by cubics. This does not
mean that strokes could not have additional stylization like waves
or zigzags, even on a stroke-by-stroke basis. Thus, our method does
not limit visual style compared to TAM, but allows for more stylis-
tic freedom by decoupling stroke positioning and stroke style.

The main limitation of our method is that it needs an overlap-
free UV mapping, oriented on object features. Such an UV map-
ping is never readily available, and we have yet to propose an auto-
mated solution, or show that an existing one like lapped textures as
in [PHWF01] can be adapted.

Acknowledgements

This work has been supported by OTKA PD-104710.

References
[Hay00] HAYASHI F.: Econometrics. Princeton University Press, 2000.

2

[LKL06] LEE H., KWON S., LEE S.: Real-time pencil rendering. In
Proceedings of the 4th international symposium on Non-photorealistic
animation and rendering (2006), ACM, pp. 37–45. 1

[Mei96] MEIER B. J.: Painterly rendering for animation. In Proceed-
ings of the 23rd annual conference on Computer graphics and interactive
techniques (1996), ACM, pp. 477–484. 1

[NW06] NOCEDAL J., WRIGHT S. J.: Conjugate gradient methods.
Springer, 2006. 2

[PHWF01] PRAUN E., HOPPE H., WEBB M., FINKELSTEIN A.: Real-
time hatching. In Proceedings of the 28th annual conference on Com-
puter graphics and interactive techniques (2001), ACM, pp. 581–581. 1,
2

[SS14] SZÉCSI L., SZIRÁNYI M.: Recursive porcedural tonal art maps.
In WSCG 2014 Full Papers Proceedings (2014), Union Agency, pp. 57–
66. 1

[USSK11] UMENHOFFER T., SZÉCSI L., SZIRMAY-KALOS L.: Hatch-
ing for motion picture production. In Computer Graphics Forum (2011),
vol. 30, Wiley Online Library, pp. 533–542. 1

c⃝ 2016 The Author(s)
Eurographics Proceedings c⃝ 2016 The Eurographics Association.

20


