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Abstract: When fusing depth images into a 3D volumetric model, a crucial task is to mark 
macro-cells as empty or as intersected by the noisy surface represented by the depth 
image. This paper proposes a simple marking algorithm for the GPU implementation of 
hierarchical volumetric fusion. The method is based on multi-level DDA ray-casting. The 
GPU implementation is of scattering type, but we also show a solution to avoid atomic 
writes, which improves performance. 

Volmetric fusion of 3D depth images 
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Motivation: Real-time volumetric fusion of 3D depth images 
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Hierarchical fusion to attack Step 1 

3D object is reconstructed from depth images as a 3D Truncated Signed Distance Field 
(TSDF).   
 
Volumetric fusion repeats the following steps: 

1. Fusion: Find cells that are empty or affected by the current depth image and fuse, i.e. 
average their stored TSDF value with the TSDF obtained from the current depth image. 

2. Rendering: Execute ray casting to render the surface from the current camera also 
computing the surface normals. 

3. Get depth image: Read the new depth image from a possibly moving camera and 
compute the normals of the back projected depth image. 

4. Camera tracking: Based on the rendered surface and normal vectors and the 
measured distance values, compute the new camera position and orientation with the 
Iterated Closest Point (ICP) algorithm 

Micro-voxels 

Comparison of the commercial version of KinectFusion (left) and the proposed algorithm 
(right) when the two methods allocate the same amount of GPU memory. Voxel edge length 
could be reduced from 8 mm to 1 mm. 

Classical solution: The center of the voxel is projected on the window plane of the 
depth image to locate the pixel where it is visible from the depth camera. If the difference 
of the depth value and the distance of the voxel center from the camera is less than the 
truncation distance, the voxel is affected, otherwise it is assumed not to be intersected by 
the currently visible surface. This method works only if the voxels are small and they are 
projected to a single pixel, otherwise sampling artifacts may show up. 
 

Scalable Kinect Fusion solution: Hexagons of each voxel are projected onto the 
window plane and conservatively rasterizing the projected polygon to identify the pixels 
where depth comparison is needed. If rasterization is done in parallel, then an additional 
reduction is needed to make the final conclusion for the hexagons. 
 

Our solution: The marking process assigns a GPU thread to every pixel of the depth 
image. The thread takes the depth value of the camera in this pixel and forms an interval, 
where the minimum is the depth value minus the truncation distance, and the maximum 
is the depth value plus the truncation distance. The thread executes a DDA based voxel 
traversal method to identify those higher level cells that are intersected by this ray. Until 
the ray parameter at the exit point of the cell is lower than the minimum value, the visited 
cells are marked. 

Avoiding atomic writes in an input driven, i.e. scattering type GPU 

algorithm 
 
As different rays may intersect the same macro-cell, different threads may update the flags of 
the same cell, causing write collisions and usually necessitating slower atomic writes. 
However, in this special case, atomic operations can be saved. The two flags are put into two 
bytes of the descriptor word, thus each of them can be accessed without modifying the other 
flag. If needed, a thread sets a flag independently of its previous value, and all other bits of 
the byte are constant during the execution of this thread. So the result is independent of the 
order how threads access these bytes.  
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One frame late option 
 
In Step 2 called Rendering, a ray-casting needs to be executed anyway to track the camera by 
ICP, thus the identification of affected cells can be merged with this step reducing the 
additional cost of marking to almost zero. However, rendering happens with the old camera 
position and orientation while the fusion should use the updated camera parameters. As our 
algorithm marks only macro-cells, the one frame delay does not result in inaccuracies, but it 
can happen that voxels of a macro-cell are not updated  in a frame or are tried to be updated 
when it is not necessary.  Note that ICP requires small camera movements. 
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