Efficient Point based Global Illumination on Intel MIC Architecture

Xiang Xu^{1,2}, Pei Wang^{1,2}, Beibei Wang³, Lu Wang^{1,2}, Changhe Tu^{1,2}, Xiangxu Meng^{1,2} and Tamy Boubekeur⁴

informatiques mothémotiques

¹Department of Computer Science and Technology, Shandong University

nd ²Engineering Research Center of Digital Media Technology, Ministry of Education ³INRIA Grenoble - Rhône-Alpes, LJK CNRS, INPG ⁴LTCI, CNRS, Telecom ParisTech, Paris-Saclay University

Results

Fig.1. Performances (see Tab. 1) are measured on a Intel Xeon Phi Coprocessor 7110P, 61 cores, 1.1GHZ with 8GB memory.

Scenes	pre.	Traversal time			
	(s)	Thread (s)	Single (s)	Packet (s)	Hybrid (s)
CBox	2.95	50.90	24.19	17.61	18.19
Bunny	3.25	212.49	100.51	70.34	84.20
Sponza	4.28	266.60	122.28	90.22	86.73
Sibenick	4.11	106.51	51.02	37.48	37.07

Table 1: Performance measures.

Hybrid Vectorization Starting from the packet scheme, we trace the count of the active receivers, and when this number is less than a given threshold, we save the traversal state and switch to the single scheme for the last stages of the traversal.

Reference

[ÁSK14] ÁFRA A. T., SZIRMAY-KALOS L.: Stackless Multi-BVH traversal for CPU, MIC and GPU ray tracing. Computer Graphics Forum 33, 1 (2014), 129–140.1

[BEL*07] BOULOS S., EDWARDS D., LACEWELL J. D., KNISS J., KAUTZ J., SHIRLEY P., WALD I.: Packet-based whitted and distribution ray tracing. In Graphics Interface 2007 (2007), pp. 177–184. 1

[BWW*12] BENTHIN C., WALD I., WOOP S., ERNST M., MARK W. R.: Combining single and packet-ray tracing for arbitrary ray distributions on the intel mic architecture. IEEE Transactions on Visualization and Computer Graphics 18, 9 (Sept. 2012), 1438–1448. 1

[Chr08] CHRISTENSEN P.: Point-based approximate color bleeding. Tech. Rep. 08-01, Pixar Technical Notes, 2008. 1

[Int10] I NTEL: Intel many integrated core architecture. http://download.-intel.com/pressroom/archive/reference/ISC 2010 Skaugen keynote.pdf, 2010. 1

[WHB*13] WANG B., HUANG J., BUCHHOLZ B., MENG X., BOUBEKEUR T.: Factorized point-based global illumination. ComputerGraphics Forum 32, 4 (2013), 117–123. 1