
EUROGRAPHICS 2003 / J. Flores and P. Cano Interactive Demos & Posters

 The Eurographics Association 2003.

Polygon-Polygon Collision Detection in 2D

Juan J. Jiménez Delgado, Rafael J. Segura Sánchez, Francisco R. Feito Higueruela

Departamento de Informática. Escuela Politécnica Superior. Universidad de Jaén. Jaén. Spain.

Abstract
Collision detection between moving objects is an open question which raises major problems concerning
its algorithmic complexity. In this paper we present a polygon collision detection algorithm which uses
polygon decomposition through triangle coverings and polygon influence areas (implemented by signs of
barycentric coordinates). By using influence areas and the temporal and spatial coherence property, the
amount of time needed to detect a collision between objects is reduced. By means of these techniques, a
valid representation for any kind of polygon is obtained, whether concave or convex, manifold or non-
manifold, with or without holes, as well as a collision detection algorithm for this type of figures. This de-
tection algorithm has been compared with the well-known PIVOT2D1 one and better results have been
achieved in most situations. This improvement together with its possible extension to 3D makes it an at-
tractive method because pre-processing of the polygons is no longer necessary. Besides, since this
method uses sign operations, it proves to be a simple, more efficient and robust method.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Geometric algorithms, languages and
systems; Curve, surface, solid, and object representations.

Additional Keywords and Phrases: Animation, Barycentric Coordinates, Coherence, Collision Detection,
Triangle Cover

1. Introduction
The problem of collision detection among objects in

motion is essential in several application fields, such as
in simulations of the physical world, robotics, animation,
manufacturing, navigation in virtual worlds, etc. Apart
from giving scenes a more realistic appearance, it is
necessary for the objects belonging to it to interact, so
that they do not collide, and if they do, a suitable re-
sponse is obtained.

In this work, on the one hand, we try to use a formal
3D solid representation system, and on the other one, to
use it for the collision detection among rigid solids (first
among 2D polygons). This formal system is based on
polygons coverings by means of triangles (in 2D) and
operations with signs. This provides more efficient and
robust operations according to Feito 2.

On the other hand, the barycentric coordinates of a
point regarding a triangle are used in order to determine
the point or polygon inclusion 3. The use of barycentric
coordinates can be seen computationally more intensive,
but after the initial step, and once the sign is calculated,
it is only needed to recalculate the coordinates sign
when the point changes from some spatial zones to oth-
ers. In addition, it provides a measure of the distance of
the point to each triangle, and of course to the polygon,

so that we can verify if a point or a polygon is to a given
distance from the static polygon.

In order to check its efficiency, this algorithms have
been compared with other ones, such us inclusion algo-
rithms, and 2D collision detection ones, obtaining satis-
factory results that induce us to develop and implement
these techniques in 3D in the future.

There follows a brief scheme of the contents that are
going to discussed in this paper: First, we shall present a
summary of the authors’ previous work on which the
development of this new algorithm of collision detection
between 2D polygons is based. Next we present the new
algorithm and its implementation. Later, a temporal
study will be carried out, in which the new algorithm is
compared with the one developed by Hoffman 1 in the
PIVOT2D library. Finally, in the conclusions section, we
summarise the features of the new algorithm and future
work to be undertaken by the authors.

2. Previous Work
Previous work has carried out a characterisation of

the collision detection problem and the strategies used to
solve it 4. Other authors have also made a revision of this
problem 5, 6.

http://www.eg.org
http://diglib.eg.org

 Jiménez Delgado et al / Polygon-Polygon Collision Detection in 2D

To study the inclusion of a point in a polygon we
used the algorithm proposed in 7 adapted to use barycen-
tric coordinates. In Algorithm 1 the result of this adapta-
tion is shown.

int Polygon::inclusionTest(point p) {
 sum = 0
 i = 0
 while (i < triangleNumber) {
 is_in = Triangle[i]->inclusionTest(p)
 if (is_in==EDGE_EXTERNAL OR
 is_in==VERTEX_V1 OR is_in==VERTEX_V2)
 return IN
 else
 if (is_in==IN)
 sum += 2*Triangle[i]->sign()
 else
 if (is_in==EDGE_RIGHT OR
 is_in==EDGE_LEFT)
 sum += Triangle[i]->sign()
 i++
 }
 if (sum==2) return IN
 else return OUT //No inclusion
}

Algorithm 1. Point-Polygon inclusion test.

In 8 we can see different algorithms for the collision
detection between a point and several types of figures
(convex and non-convex, such as starred figures, con-
tour maps and totally irregular figures). These algo-
rithms are optimised according to the type of figure.
Besides, the non-convex collision detection algorithm
adapts to all the situations and offers quite good times.

tec

and the signed area 7, 11 ones. This algorithm is efficient
in most situations, with higher execution times than
crossings test algorithm, but quite near to it. Also, the
times obtained are better than those ones in signed area
algorithm.

The present work is based on the point - non-convex
polygon algorithm 8, which has been extended so that it
works with two polygons. Like its predecessor, time and
space coherence is used to reduce the number of neces-
sary calculations in collision determination. The summa-
rised point-polygon collision detection algorithm
(Algorithm 2), and an operation example (Figure 1) may
be seen underneath.

Position P0 P1 P2 P3
Order 123456 123456 123456 123456
Sign +-++++ +-++++ +-++++ +-++++
s coord. mask 110111 110011 110011 111111
t coord. mask 11-000 10--01 ------ 100100
u coord. mask 11---- 1----0 0--100
state OUT OUT EQUAL IN

Point in position P1 is in the same zone as in P2. If the point changes
from P2 to P3, it changes zones.

Figure 1: Sample operation of 2D point-polygon
collision detection algorithm. A covering of the polygon
by triangles has been carried out and shows a division
on zones.

3. Developed algorithm
3.1. 2D polygon-polygon collision detection test

 We can use a combination of the point-polygon
collision detection algorithm and the polygons
intersection test by means of influence areas. The
purpose is to verify at initial time whether collision
between the polygons takes place or not (by means of
the static test of intersection) and, if it does not take
place, to apply the temporal coherence together with
influence areas to detect whether the moving polygon is
inside the influence area of another polygon, so that the
detailed collision detection test may be applied.

Firstly, both polygons are surrounded by a circum-
ference centered in the centroid. This way, if there is no
intersection between the circumferences, a collision
between polygons may be discarded. If a collision be-
tween circumferences should occur, we must check
whether the moving polygon is inside the influence area
or not (if the centroid is in the area). If it is not inside the

P0

P1
P2

P3

1

6

2
3

4
5

1

2

3

4
5

6

7

8

9

Algorithm 2: 2D Point-polygon collision detection

. Make a triangles covering of the polygon with origin in the
centroid of the figure.

. Make a space division through the sign of barycentric
coordinate associated to the triangle edge that belongs to
the polygon (see section 4.3.)

. Calculate the sign of the moving point with respect each
zone, keep it in a bit mask (in which value 1 means that
the point is on the inner side, and value 0 on the outer side)

. Move the point

. Recalculate the sign with respect to each zone and com-
pare it with the previous mask

. If new mask is equal to the old mask return
EQUAL_STATE. Go to step 3.

. If one bit changes from 0 in the old mask to 1 in the new
mask:

7.1. Calculate barycentric coordinates t and u, only
when the bit of the mask is 1

7.2. If this change has not taken place, the point is in
the same zone. Return OUT and go to step 3.

. Check whether the point is inside each triangle. By using
Algorithm 1

. Return IN or OUT accordingly, and go to step 3.
  The Eurographics Association 2003.

We have compared the point-polygon collision de-
tion algorithm with the crossings test inclusion 9, 10

influence area, the procedure is the same as for point-
polygon collision detection but, instead of considering
the side of the polygon, we must consider its extension,
that is to say, the side of the corresponding influence

 Jiménez Delgado et al / Polygon-Polygon Collision Detection in 2D

 The Eurographics Association 2003.

area. If the point is inside the influence area, the polygon
detailed collision detection is used (Figure 2).

In 1, we check whether intersection between circumferences occurs; no
collision takes place. In 2, there is intersection between circumferences,
but the centroid is not in the influence area; intersection does not take
place. This situation allows making use of temporal coherence. In 3,
there is intersection between circumferences, and the centroid is in the
influence area. A detailed collision test between polygons is carried out.

Figure 2: Collision detection with bounding circum-
ferences and influence areas.

The number of intersection tests between the edges
of both polygons may be reduced by calculating where
the centroid of the moving polygon is situated, that is,
under what edges’ areas of influence. If the centroid is in
one of these areas, it is likely to collide with the edge of
that area (and probably with another one).

Figure 3: a) Influence area. In red(vertices sign
change), edges which can collide. b) Extended influence
area

In Figure 3.a) we can see the centroid of the polygon
in the influence area of an edge. It can only collide with
this edge (if it were in more influence areas, it could
collide with each of the edges involved with those ar-
eas). In Figure 3.b) we can see that this reasoning is not
altogether correct for, although it is still inside the same
influence area (just one), edge 2 is also involved (and in
fact it does collide with the polygon). This problem may
arise in the vicinity of the vertices. In order to solve this,
we have used the extended influence area of the poly-
gon. If the centroid is in the extended influence area of
an edge, that edge can collide with the polygon. Only the
edges meeting this condition can collide with other
edges of the polygon.

In addition, it is possible to reduce the number of
edges of the polygon in movement that may be involved
in the collision. We need only check, with respect to
each edge of the static polygon that can take part in the
collision, the sign of first barycentric coordinate s of
each one of the vertices of the polygon in movement.
The edges that can collide will be those in which a
change of sign in these barycentric coordinates takes
place in the vertices (Figure 3.a). This algorithm is
shown underneath (Algorithm 3).

Algorithm 3: 2D polygons collision detection test.

4. Time study
In order to verify the efficiency of this algorithm, the

times for different types of trajectories and polygons
have been measured (a circular one close to the static
figure (Figure 4.a), and a linear one, so that it draws
near the static polygon and collides with it (Figure 4.b).
These times have been compared with those from the
PIVOT2D library 1. The times obtained in circular
trajectory can be seen in Figure 5.

Figure 4: Trajectory types: a) circular. b) linear.

Make a triangles covering of the polygon with origin in the
centroid of the figure.
Calculate the radius of the bounding circumferences
r = radius of the moving polygon bounding circumference
p = point that is the centroid of moving polygon
First step:

- Move the polygon
- If there is no intersection between bounding circum-
ferences:

- Return OUT
- Go to the first step

Second step:
- Calculate the influence mask
- Compare with the previous influence mask
- If p moves out of some influence area, then go to the
third step
- Else return OUT. Go to the first step

Third step:
- If p is in the influence area of length r of the polygon

- Obtain the edges that may take part in the collision,
using extended influence area of the polygon.
- Make and return the polygon-polygon detailed in-
tersecting test with edges calculated previously.
- Go to the first step

- Else return OUT
- Go to the first step

1

a)

b)

+

–

++
+

–

2

2

3

1

Influence
area

Surrounding
circumferenc

External radius

a) b)

 Jiménez Delgado et al / Polygon-Polygon Collision Detection in 2D

  The Eurographics Association 2003.

8

16
32

64
128

256
512

1024

8

32

128

512

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00
100.00

seconds

vertices of static polygon

vertices of
moving polygon

New Algorithm

8

16
32

64
128

256
512

1024

8

32

128

512

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00
100.00

seconds

vertices of static polygon

vertices of
moving polygon

PIVOT2D

Figure 5: Times obtained in tests with a) the new algorithm and b) PIVOT2D. X and Z axes show the number of vertices
of the static and moving polygons respectively.
5. Conclusions and future work

We have obtained a 2D polygon-polygon collision
detection algorithm with better times than those
provided by the PIVOT2D library in most situations.
This algorithm is simple, more efficient and robust.
Besides, it is suitable for any type of polygon, convex or
non-convex, manifold or non-manifold, with or without
holes, and, above all, it may be extended to 3D, which
makes it especially attractive.

It uses a triangles covering of the polygons as pre-
processing. This covering is made in a linear time based
on the number of vertices, no type of complex data
structure being necessary. The algorithm also uses the
geometric and temporal coherence. Besides, once the
collision is detected, we can obtain the edges taking part
in it, almost at the same time. One final advantage is that
it allows specifying a distance between objects.

The algorithm is being improved as far as its imple-
mentation is concerned. These improvements can offer
us still better times than those reflected in this study.
Some of these improvements would be: the efficient
implementation of the operations between bit masks;
the use of graphical hardware speeding up the opera-
tions; the use of techniques of space subdivision, invari-
ants with rigid transformations; the use of the geometric
coherence to calculate the edges that cross influence
areas, so that it is not necessary to re-calculate them in
the following movement; the extension of these tech-
niques to several moving objects; and, finally, the use of
bounding volumes hierarchies at different levels of de-
tail.

Extension to 3D is the most important work to be
developed. It is also necessary to make a mathematical
study of the speed of the algorithm based on the size of
the influence areas and to obtain the times of effective
calculation of the edges involved in the collision.

References
1. Hoff III, Kenneth E.; Zaferakis, A.; Lin M.;

Manocha, D.; Fast and Simple 2D Geometric
Proximity Queries Using Graphics Hardware.
Symposium on Interactive 3D Graphics (I3D),
March, 2001.
http://www.cs.unc.edu/~geom/PIVOT/

2. Feito, F.R.; Segura, R.J.; Torres, J.C. Represent-
ing Polyhedral Solids by Simplicial Coverings.
Set-Theoretic Solid Modelling, Techniques and
Applications, CSG’98 Information Geometers,
203-219, 1998

3. Badouel, F. An efficient Ray-Polygon intersec-
tion. Graphics Gems. Academic Press, 390-393,
1990

4. Jiménez, J.J.; Segura, R.J.; Feito, F.R. Tutorial
sobre Detección de Colisiones en Informática
Gráfica. Novatica, Nº 157. May-June 2002, pp
55-58

5. Jiménez, P.; Thomas, F.; Torras, C. 3D collision
detection: a survey. Computer & Graphics 25
(2001) 269-285

6. Lin, M; Gottschalk, S. Collision Detection be-
tween Geometric Models: A Survey. IMA Con-
ference on Mathematics of Surfaces, 1998.

7. Feito, F; Torres, J.C.; Ureña, L.A. Orientation,
Simplicity and Inclusion Test for Planar Polygons.
Computer & Graphics, Vol. 19, N 4, 1995

8. Jiménez, J.J., Segura, R.J., Feito, F.R.. Algorithms
for Point-Polygon Collision Detection in 2D. 1st
Ibero-American Symposium on Computer Graph-
ics, Guimaraes-Portugal, pp. 253-261, 2002

9. Haines, E. Point in Polygon Strategies. Graphics
Gems IV. Academic Press, 1994.

10. Laszlo, M. Computational Geometry and Com-
puter Graphics in C++. Prentice Hall, 1996.

11. Hoffmann, C. Geometric and Solid Modelling. An
Introduction. Morgan Kaufmann Publishers, 1989

a) b)

	p43: 43
	p45: 45
	p44: 44
	p46: 46

