
Interactive demo: OpenGLfly, version ‘Euskadi’

José Daniel Gómez de Segura Borja Fernández Rosa Peral Susana López Eduardo Ibáñez
jdgsegura@euve.org bfernandez@euve.org rperal@euve.org slopez@euve.org eibanez@euve.org

Virtual Reality Department
European Virtual Engineering (EUVE)

Vitoria - Spain

Abstract
This paper describes the demo associated to one of our projects, which is currently under
development. The version presented can be considered as a large terrain simulation over the Basque
Country area (North of Spain), with real imagery, georeferenced information and a user friendly and
interactive interface.

The main goal is to demonstrate the applications of virtual reality techniques to fields such as virtual
tourism, low cost simulators or edutainment. The requirements of the demo are low enough for it to
be run in a home PC with a middle range graphics accelerator card. Currently, there are some
OpenGL optimisations specific to NVIDIA chipsets and consequently this platform has a slight
advantage in terms of performance.

1. Introduction

The motivation for this project started two years ago.
At that time we were involved in the development of a
real time simulation of a civil engineering work over a
large terrain areas for one of our customers.

The initial proposal included a simulation that used SGI
OpenGL Performer libraries. Obviously, the hardware
platform was from SGI. We own an Onyx2 with three
graphics pipes and a Reality Centre for active
stereoscopic visualisation.

The use of Performer has some key advantages, as it
drives the Onyx2 graphics hardware to its maximum.
Another reason is that it implements techniques for
terrain visualisation1, such as:

- ASD: Active Surface Definition is a powerful
real-time surface meshing and morphing
library. It enables you to roam surfaces that
are too large to hold in system memory very
quickly. The surfaces, called meshes, are
represented by triangles from more than one
LOD. (SGI’s Performer Guide)

- Cliptextures: patented algorithm to allow
textures that are much bigger than will fit in
texture memory, and even in system memory
and exploits and extends properties of MIP-
maps (http://www.vterrain.org)

Although the best quality in the simulation could have
been achieved with these features, some major
drawbacks were identified.

The main one was that the purpose of our customer
with this simulation was the presentation of their
project to different social agents, which implies
mobility. Unfortunately, SGI’s high-end hardware is
not very common. This prevented us from delivering
the simulation as code to be installed in other locations.
Consequently, it was clear that the software and
hardware together formed part of the final product.

From our experience, customers usually want to show
this kind of simulations at their own sites. Our facilities
could have been used, but this was unpractical in this
case and moving the Onyx2 is fairly complicated. This
does not mean that it cannot be done at all, but only for
special events.

Thus, we reached the conclusion that it was necessary
to provide a PC version of the simulation. PCs are way
cheaper than Onyxes, so the customer could acquire a
suitable platform for every location where the
simulation was to be shown, or even use some of the
available computers if these met the requirements.

In order to get the greatest compatibility between both
platforms and reduce development time, some

Pedro
 The Eurographics Association 2003.

Pedro
Ó

Pedro
EUROGRAPHICS 2003 / J. Flores and P.Cano

Pedro
Interactive Demos & Posters

http://www.eg.org
http://diglib.eg.org

customer that could not be shown, and with these
requirements:

- use of standard DEM and orthophotography
available from the Internet or from public
institutions

- fast enough on a standard PC so that most
users can run the software at home

- optimised for vast terrain areas with high
visual fidelity

- easy to fly and visually attractive

The current state of this development is the demo that
is being presented in this paper.

2. Description of the demo

The application openGLfly, version ‘Euskadi’, is a 3D
graphic engine for high quality and visual fidelity
terrain visualisation, in this case for the Basque
Country region. The terrain area is not limited by the
graphic capabilities of a PC, but for the amount of
secondary storage space. It can also show
georeferenced information about singular points, such
as cities, villages and mounts.

The user can move, or better fly, over the terrain
database using the mouse, which is represented by a
paper airplane, and the mouse buttons:

- left button: accelerate
- right button: decelerate
- middle button: stop and look around

The database has been created from digital elevation
models (DEM) that can be obtained from the Basque
Government. They have been processed with specific
algorithms, which will be discussed later, in order to
get and adaptive triangle mesh. This reduces the
number of elements without introducing too much error
with the original DEM. The terrain area has been
divided into 3000 x 3000 metre tiles.

Each tile, of square shape, has an associated texture
created with orthoimagery from the same source as the
DEMs. The quality of these photographs has been
reduced to meet the requirements of memory of a PC
graphics card.

The application defines a grid of 11 x 11 tiles and
textures around the observer position in the virtual
database. When the observer moves, tiles and textures
outside that grid are unloaded from memory and
replaced with new ones, so that there is always
geometry in front of the camera.

There is a touristic mode, which can be activated with
the button on the lower right corner of the screen.
In this mode, a window opens on the right hand side
with information about the nearest visible singular
point in the database.

Fig. 1 The application showing additional
information for the nearest singular point.

Clicking with the left button of the mouse on the map
moves the camera position to that coordinates. This
action implies the unloading of all tiles and textures and
the loading of 121 (11 x 11) new ones. Therefore, the
process is hidden in order to avoid terrain popping.

Fig. 2 OpenGLfly while loading terrain data

The help button or the F1 key, show a window on
the left hand side with the actions that can be
performed pressing keys or with the mouse.

The ESC key quits the application.

With the knowledge gained from that project, we
decided to develop a new application for large terrain
visualisation, removing the sensible materials from our

potentialities were not implemented (ASD and
cliptexturing, while true multipipe capabilities run only
on Onyx). The PC code was based on OpenGL libraries
and basically runs with the same database as in the
Onyx.

Pedro
 The Eurographics Association 2003.

Pedro
Ó

Pedro
J. D. Gómez, B. Fernández, R. Peral, S. López, E. Ibáñez / OpenGLfly, version ‘Euskadi’

Fig. 3 Quit confirmation dialog

OpenGLfly uses multithreading, so that certain critical
parts of code are not blocked by I/O operations. A
multiscreen version has also been developed (however,
it is not presented here). Such version can run
distributed over several computers synchronised over
TCP/IP links and can be used for larger displays or
passive stereoscopic visualisation.

This features have been implemented in this demo:

- OpenGL coding
- Culling with Bounding Boxes
- Anisotropic texture filtering
- Circular fog
- Textures in R5G6B5 format to reduce

memory utilisation
- Vertex Array Range extension for OpenGL

for a faster vertex transfer to the graphics
card memory.

- Localised for Spanish, English and Basque
Language.

3. Design considerations

3.1 TIN

For simulations where the user ‘flies’ over the terrain,
which is composed of DEM and orthophotographs, a
TIN is usually a good compromise between accuracy
and geometric complexity (which can be great enough
to slow down the drawing of the scene)2,3.

A TIN, or triangulated irregular network, is composed
of several triangles in different shape. They form a
mesh that minimises the differences with the original
DEM up to a desired error measure. It is pre-computed
and it does not implement LODs4.

One reason to use TINs is that in this scenario the
textures lose quality when the camera is too close to the
terrain. The observer does not get any visual

improvement in that situation. Besides, the information
contained in aerial photographs is 2D. Therefore, they
are only useful for views from above. If a surface view
is needed, manual modelling can hardly be avoided in
order to recreate the features in the terrain, such as
buildings, roads and even terrain materials.

Consequently, the approach used in the demo is
adequate for simulations where the camera remains
over a certain altitude.

An advantage of this method is that is very easy to
position or reference objects on the terrain surface, as
this does not change. If several LODs4 had been used,
the differences in the rendered terrain make necessary
to track the relative position between objects and the
actual surface.

So as to make terrain tilling easier (a must to hold huge
terrains), the terrain has been splitted in more
manageable pieces, with accordingly photograph
divisions and geometry divisions. Finally triangles have
been generated using Delaunay and a variant of data
dependent triangulation algorithm. We introduced a
little difference. Although the general algorithm
remains the same, the error measure between the real
data and the approximated mesh was calculated with
volume differences between the planes we were
generating and the ones given by the “ideal mesh”, this
is, the mesh we would have if we used all the points.

In our implementation, terrain vertices have 3
components (position, the normal vector and texture
coordinates).

Position is quite trivial to obtain from the usually initial
reference UTM coordinates and the metre resolution of
the files.

So are the texture coordinates if the projection of the
points is linear and tilled pieces are therefore
rectangles. If generated tiles aren’t rectangles,
barycentric coordinates should be used to achieve
accurate texture mapping, which should be done off-
line to speed up the whole process, as the real-time
coordinate generation is slower.

3.2 Efficient paging of terrains

In the terrain generation process we have defeated the
RAM memory size limitation, and it’s even more
important to do so in real-time applications.

With this idea in mind we’ve implemented an
algorithm that loads/unloads terrain in system memory
as they are needed by proximity to the camera. The
terrain pieces to be loaded in system memory can be

Pedro
J. D. Gómez, B. Fernández, R. Peral, S. López, E. Ibáñez / OpenGLfly, version ‘Euskadi’

Pedro
Ó

Pedro
 The Eurographics Association 2003.

selected in several ways: a rectangular matrix around
the camera, the nearest ones inside the frustrum and
others5.

We’ve chosen to load a rectangular matrix of terrain
around the view point, because used memory size isn’t
as important as avoiding temporally missing terrain
when turning the camera.

The paging algorithm flow diagram is described in
Appendix A.

Implementing the terrain pagination in a separate thread
is a must in order to avoid the drawing thread being
blocked by I/O operations, which is just unacceptable
in any commercial graphic application6.

4. Results

We measured performance (frames per second) with
different graphic devices and the results obtained are
the following ones:

Graphic device Frames per second
nVidia geForce 2 ~50
nVidia geForce 3 ~65
nVidia geForce 4 85
ATI Radeon 7200 ~10
ATI Radeon 9700 ~40 (normal PC)

~65 (very fast PC)

As we can see, even the fastest ATI card hardly equals
the speed achieved with a non top-edge nVidia card,
even though it’s supposed to be even faster than a
geForce4, but this is because ATI doesn’t support the
nVidia’s openGL extension. They have made another
similar extension and we have not supported it in the
engine because it’s a bit different and programmation
would get a bit complex7,8,9,10.

With a geForce4 (not nVidia’s latest card, which is
geForce FX, not available here at the time we were
writing this paper), we achieved a frame rate equal to
the used refresh frequency.

Regarding the visual quality, it has to be noticed that
some terrain artifacts can be found. These appear as
pyramids, or as points of unusual height. It has been
probed that they also exist in the original data, which is
the case for the artificial cliffs that are located in the
political border of the region and the unreal hill near
Hondarribia.

5. Requirements

This demo requires a PC with a 32 Mbytes graphics
accelerator card compatible with OpenGL. It has been
tested under Windows 2000 and XP, but it should also
run with Windows 98 & Me.

At least DirectX 8 has to be installed, as it is used for
input devices interaction.

The simulation has an acceptable frame rate with
processors better or equal to a Pentium III @ 350 MHz,
with 128 Mbytes RAM.

To copy and decompress all the terrain database, 900
Mbytes are needed in the hard disk.

6. Future work and improvements

Although this demo runs quite smoothly and can be
considered a standalone application for virtual tourism,
it is not the final stage of our project. There are many
improvements that can lead to a better efficiency and
visual quality.

We plan to research and develop in the following areas:

- better paging algorithm, in terms of memory
usage and speed: the rectangular tile grid is
easy to manage, but leaves most of the data
behind the observer point of view. In our
case, this means a waste of texture memory.

- higher resolution textures, or mipmaps: in
order to improve the appearance, instead of
using more polygons, it is best to use higher
resolution textures.

- cinematic effects.
- modelisation of Nature.

7. References

1. SGI OpenGL Performer Programmer's Guide.

2. Michael Garland and Paul S. Heckbert, “Fast
Polygonal Approximation of Terrains and Height
Fields”, Technical Report CMU-CS-95-181 Computer
Science Dept., Carnegie Mellon University.

3. Paul Bourke, “An Algorithm for Interpolating
Irregularly-Spaced Data with Applications in Terrain
Modelling”, Swinburne Centre for Astrophysics and
Supercomputing, Australia.

4. Hugues Hoppe, “Smooth View-Dependent Level-of-
Detail Control and its Application to Terrain
Rendering”, Microsoft Research.

Pedro
J. D. Gómez, B. Fernández, R. Peral, S. López, E. Ibáñez / OpenGLfly, version ‘Euskadi’

Pedro
 The Eurographics Association 2003.

Pedro
Ó

5. R. Pajarola & P. Widmayer, “Virtual
Geoexploration: concepts and design choices”,
International Journal of Computational Geometry &
Applications.

6. Barry Wilkinson, Michael Allen, “Parallel
Programming”, Chap. 11, Image Processing, Ed.
Prentice Hall.

7. NVIDIA OpenGL Extension Specifications,
http://developer.nvidia.com/view.asp?IO=nvidia_openg
l_specs, NVIDIA Corporation.

8. AGP technology technical information,
http://www.intel.com/technology/agp/info.htm, Intel
Corporation.

9. Optimizing memory bandwidth,
http://cdrom.amd.com/devconn/events/gdc_2002_amd.
pdf, AMD Corporation.

10. IA-32 system programming,
http://developer.intel.com/design/Pentium4/manuals/,
Intel Corporation.

Pedro
J. D. Gómez, B. Fernández, R. Peral, S. López, E. Ibáñez / OpenGLfly, version ‘Euskadi’

Pedro
Ó

Pedro
 The Eurographics Association 2003.

Appendix A

Load from
memory
current texture
and tile

Elimina de
memoria
geometría y
texturas
obsoletas

Compute new
grid

Update camera
position User

interaction

Camera
coordinates in
the grid centre

Terrain Load /
Unload thread

Pedro
J. D. Gómez, B. Fernández, R. Peral, S. López, E. Ibáñez / OpenGLfly, version ‘Euskadi’

	p17: 17
	p19: 19
	p21: 21
	p18: 18
	p20: 20
	p22: 22

