EUROGRAPHICS 2024/ E. Anderson and B. Sousa Santos

Education Paper

Teaching Game Programming in an Upper-level Computing Course

Through the Development of a

S. Hooper1 , B. C. Wiinsche'

C++ Framework and Middleware

,P. Denny1 ,and A. Luxton-Reilly1

University of Auckland, New Zealand

Figure 1: Five example formative exercise scenes — each with real-time debugging features. From Left: (a) Alpha blending trails with
collision detection and response, (b) The ParticleEffectsEditorScene, (c) Data-driven level loading, (d) The AsteroidsCloneScene with static
text rendering and win/lose conditions, and (e) The PhysicsGameScene with static and dynamic rigid bodies, projectiles, and particle effects

Abstract

The game development industry has a programming skills shortage, with industry surveys often ranking game programming
as the top skill-in-demand across small, mid-sized, and large triple-A (AAA) game studios. C++ programming skills are de-

sired, however, educators can perceive C++ as too difficult

to teach due to its size and complexity. We address the challenges

of teaching C++ in an upper-level Game Programming course and demonstrate how learners are up-skilled in C++ game
programming, providing insights and reflections on the course. We show how through careful educational-design choices, com-
bined with scaffolding a C++ framework and contemporary middleware, it is possible to transition learners to C++ for game

programming.
CCS Concepts

» Applied computing — Computer games; * Computing methodologies — Computer graphics; * Social and professional

topics — Computing education;

1. Introduction

There is a shortage of skilled C++ game programmers [Haull],
with game industry surveys highlighting the challenge of hiring
for the specialised skills needed [Kenl6; NZG22; Int23]. Previ-
ous work has discussed game programming topics and techniques
to prepare learners for industry roles [IGD08; The23]. With con-
tinual advances in the game industry, including the ongoing de-
velopment of game engine (GE) technology, changing or keeping
curriculum up-to-date can be challenging [SHS*08; Ken16]. Us-
ing C++ and middleware can lessen the challenge by helping to
mitigate potential impacts on a course when changes to a GE oc-
cur. We provide insight and reflection on the techniques and tech-
nologies used at a large, urban university to transition learners to
C++ for game development in an upper-level Game Programming
course (GPC). We describe a reusable C++ framework alongside a
variety of contemporary middleware and associated techniques for

© 2024 The Authors.

Proceedings published by Eurographics - The European Association for Computer Graphics.

This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/eged.20241009

game programming, rather than using a specific GE. Focusing on
the core principles of game programming and transferable knowl-
edge of a widely used programming language such as C++, can
positively engage learners, encouraging them to not only develop
their game programming skills and knowledge, but also make them
more versatile as game programmers.

2. Related work

Historically, game programming courses tended to take a C++-
based approach [CRGO5; PKRO6; AKO7], sometimes with Mi-
crosoft’s DirectX application programming interface (API) [REO7;
PNS*#08]. In the late 2000s many courses used now-defunct tech-
nology, such as Microsoft XNA, a C#-based API [ZLS08; MP09].
Since the mid-2010s, two commercial GEs have been widely
used in teaching: Unity (https://unity.com/) and Unreal En-
gine (https://unrealengine.com/) [DBEKI17], but other en-

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org



https://orcid.org/0009-0007-9315-8016
https://orcid.org/0000-0002-8013-4118
https://orcid.org/0000-0002-5150-9806
https://orcid.org/0000-0001-8269-2909
https://unity.com/
https://unrealengine.com/
https://doi.org/10.2312/eged.20241009

20f 4 S. Hooper, et al. / Teaching Game Programming in an Upper-level Computing Course

gines have also been used [Rit09; ELGG10; SP23]. In an educa-
tional setting, the choice of GE is not trivial [FC20] and using a GE
can hide the underlying complexity of game development [TN22].
There have even been courses at postgraduate level focusing on
GE development itself [AG16]. Some game programming courses
have taken the approach to integrate open source libraries [AKO07],
and ANDERSON and PETERS provided insights into possible APIs
to use in Computer Graphics (CG) education, alongside points to
consider when using middleware in an educational setting [AP10].
Educators do need to be aware of the burden that can be introduced
by using multiple APIs within their courses [WilO1]. Learning C++
alongside learning CG programming with an API can be challeng-
ing [WCS*18; UKW22]. Some educators also believe the language
is too large and complex to teach, even with a multiple course se-
quence in a three-year degree programme [FC20].

3. The Game Programming course (GPC)

The GPC was a third-year computing elective delivered across a
twelve-week semester, with two 2-hour directed contact sessions
per week. Learners were also expected to spend around six to eight
hours per week on self-directed activities for the course. After an
initial introduction to C++, learners implemented key GP Frame-
work (GPF) functionality through formative exercises, while also
upskilling in game programming techniques. A combination of
C++ scaffold and middleware was used to craft the reusable frame-
work. As per RODEN and ETHEREDGE, game programming con-
cepts can be introduced with a 2D approach, and then evolved into
the equivalent 3D counterpart [RE0O7]. The GPC used this strategy.

3.1. Middleware used — GPF integration

As well as supporting framework development, the use of con-
temporary middleware exposed learners to technologies used in
commercial game development. Learners were often familiar with
these technologies having seen splash screens at the start of games
they had played. Getting to see the developer side of how middle-
ware worked and could be integrated into the GPF, as well as their
APIs, documentation, and starter sample code, was not only excit-
ing for learners, but also a practice that should be used in advanced
technical courses [Wil01; PNS*08]. Middleware was updated each
semester with new versions integrated and tested.

The initial API chosen for graphics rendering in the GPF was
OpenGL (https://www.opengl.org). as learners were already
familiar with this from the prerequisite CG course. To build a
framework to support cross-platform development, Simple Direct-
Media Layer (SDL) (https://www.libsdl.org) was selected.
SDL is used in commercial games. It provides low-level access
to graphics hardware — it can be integrated with graphics APIs
— and game input devices. Additional libraries can extend its
functionality, such as SDL2-image (https://wiki.libsdl.org/
SDL2_image) for texture loading, and SDL2_ttf (https://wiki.
libsdl.org/SDL2_ttf) to rasterise TrueType fonts — learners
supplied their own free fonts. The OpenGL Extension Wrangler
Library (GLEW) (https://glew.sourceforge.net), a cross-
platform open-source C/C++ extension loading library, was also in-
tegrated. Dear ImGui (https://www.dearimgui.com) is a graph-
ical user interface library, distributed as .cpp and .h files that

can be added to a C++ project. Helper code for different graph-
ics APIs and platforms is provided, including but not limited to,
SDL2 and OpenGL, as well as code examples demonstrating usage
of the APIL. Dear ImGui was added to the GPF to enable the creation
of interactive visual debugging interfaces. FMOD (https://www.
fmod.com) was used for audio, enabling the loading and playing
of sound effects, streaming of music files, and generation of au-
dio effects. It has a C++ API, good documentation, and pre-made
code examples. The physics engine Box2D (https://box2d.org)
was added for collision detection and response. This middleware
has many pre-made physics samples and learners were able to use
these to upskill. The Lua (https://www.lua.org) programming
language was used to enable scripted data-driven design within the
framework. The RakNet (https://www.Jjenkinssoftware.com)
API was used for networking. Additionally, other middleware was
integrated depending on game design needs, for example, Mi-
crosoft’s DirectX and the DirectX Tool Kit (https://github.
com/microsoft/DirectXTK) with its C++ helper classes, was
sometimes used as an alternative CG API, and Nvidia’s PhysX
(https://developer.nvidia.com/physx-sdk) was used for 3D
physics simulation. Learners were incrementally introduced to each
piece of middleware with formative exercises that worked to inte-
grate the middleware into the GPF.

3.2. Getting started — Initial code skeletons

To introduce the GPF, an initial interactive lecture session reviewed
the skeleton source code of the main classes and discussed frame-
work design choices, highlighting relationships between classes
and the steps to get the framework up-and-running. Each class pro-
vided the opportunity to contextualise different programming ideas
in C++ alongside game programming techniques.

To begin implementing the GPF, a new Visual Studio (https://
visualstudio.microsoft.com/vs/) Solution and Project was
created and configured to use the SDL2 and GLEW libraries (con-
figuring access to . h includes and . 1ib linker settings). The De-
bug and Release build targets were configured for the 32-bit x86
platform, each differentiated by outputting a uniquely named . exe
to enable testing of each target’s game executable. For some learn-
ers, this was their first encounter with the implications of Debug
and Release builds. The project was configured per target to output
to separate directories for intermediate build data, and the Build
Output directory was configured to be the Working directory where
all game-ready assets (for example, texture, game configuration,
and level data files) were stored and loaded from.

With learners having spent prior courses programming with Java
and C, there were many C++ topics to introduce. This included,
but was not limited to, pointers, references, class declaration (.h
files), class definition (. cpp files), destructors, copy constructors,
operator overloading, and the C++ tool chain (preprocessor, com-
piler, linker). The difference between using a #include versus
forward declaration, and using char« strings contrasted with the
std: :string are the sorts of C++ aspects that are unfamiliar to
learners, yet important to becoming a productive C++ game pro-
grammer. C++ concepts were carefully introduced alongside the
development of the GPF, incrementally expanding the complexity
of C++ used through the reveal of the framework.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.


https://www.opengl.org
https://www.libsdl.org
https://wiki.libsdl.org/SDL2_image
https://wiki.libsdl.org/SDL2_ttf
https://glew.sourceforge.net
https://www.dearimgui.com
https://www.fmod.com
https://box2d.org
https://www.lua.org
https://www.jenkinssoftware.com
https://github.com/microsoft/DirectXTK
https://developer.nvidia.com/physx-sdk
https://visualstudio.microsoft.com/vs/

S. Hooper; et al. / Teaching Game Programming in an Upper-level Computing Course 30f4

The GPF established good practices for code modularity and
reusability by highlighting the difference between class declaration
(.h) and definition files (. cpp). Each GPF .h followed a com-
mon template format of methods first, followed by properties, each
ordered with access modifiers as follows: public, protected,
private, as well as preprocessor header guards. Object lifespan
and data life cycles in C++ at runtime can be surprising to learners,
and one technique to help highlight this behaviour is to make the
copy constructor and assignment operator private within a class
declaration. This will cause the C++ compiler to generate an error
at compile time if the learner accidentally causes an object copy
to occur — helping to highlight the difference between working
with a concrete instance of an object, versus an object reference via
pointer — all different and potentially surprising behaviour when
compared to the learner’s prior Java and C experiences.

Formative exercises often used TODO comment stubs to guide
learners through developing new features, for example, a comment
to add memory leak detection code. As classes were introduced,
different opportunities to discuss common game programming pat-
terns arose. The Logger introduced the Singleton and this was a
useful discussion point [GS08], and a chance to check learner un-
derstanding of the static keyword.

The program’s entry point was light-weight, with a simple main
function that initialised the Game instance, and then ran the game
loop — an essential game pattern [GS08]. Next, the Game class
was implemented — again using the Singleton pattern, the appro-
priateness debate of this pattern could be quickly revisited with
learners [GS08]. The Game class’s initialisation was responsible
for loading required game resources, and controlling the game loop
— the calls to the Process and Draw methods.

The Scene interface was critical to establishing different in-
game scenes. To create a new scene, learners derived a subclass re-
alisation that implemented unique behaviour for loading, process-
ing, and drawing, as well as containing game entities that belonged
to the scene. The design of this interface exposed learners to unfa-
miliar C++ features, such as using the virtual keyword to create
abstract and pure virtual methods, the importance and behaviour of
a virtual destructor, and by using the debugger, the creation of the
v-table at runtime. Also, the DebugDraw abstract method could
be used by subclasses to implement Dear ImGui debug visualisa-
tions. Many exercises were built by deriving a new Scene sub-
class, creating a contained area for a particular game scenario, tech-
nical feature experiment, or a test sandbox, such as AlphaBallsS-
cene, ParticleEffectsEditorScene, BombermanCloneScene, Aster-
oidsCloneScene, or PhysicsGameScene (see Figure 1).

The Renderer interface was also critical, as this class pro-
vided an abstraction for drawing using the graphics card. In the
early years of the course, the initial implementation used the
SDL2 2D rendering functionality, with the option for learners to
then extend it to support 3D using OpenGL or DirectX. Learn-
ers could use either the fixed-function or programmable shader
pipeline, depending on their comfort level, interest level, and de-
sire to be challenged. The 2022 Renderer design used the pro-
grammable shader pipeline, with OpenGL and OpenGL Shading
Language (GLSL), but still kept the interface simple to encap-
sulate shader complexity. The Renderer.cpp implementation

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

wrapped SDL2 based upon the SDL Wiki examples (https://
wiki.libsdl.org/SDL2/SDL_CreateRenderer), demonstrating
the Facade pattern [GS08]. The Renderer also provided an op-
portunity to discuss the usage of const in C++, and further ex-
amples of when to use #include versus forward declaration, and
the difference between pass-by-value and pass-by-reference.

The Renderer demonstrated another useful pattern, a Fac-
tory which created renderable Sprite objects. Learners were un-
familiar with graphical shader programming, as the prerequisite
CG course only covered the fixed-function pipeline. Simple GLSL
shaders, using the old version 3.3 as a starting point, were used to
draw sprites, enabling learners to see how these shaders are used
to control rendering and allowing them to become familiar with
how shader code is written, compiled and then loaded at runtime
within the framework. Following this, further introductory graph-
ical effects, such as blur, were developed using shaders. Addi-
tional shaders were developed as the course progressed and these
were used to create different graphical special effects and rendering
styles, including additional post-processing effects, as well as 3D
transformation and animation techniques. Alongside this a Tex—
tureManager was developed to support loading and retrieving
textures, avoiding duplicating the same resource in memory. This
initial design became the blueprint for other resource managers, in-
cluding audio files, static rasterised text, and 3D meshes. This also
formed the basis of an initial in-class discussion about the creation
of a C++ generic template class that could be used for any sort of
resource management within the framework.

From here, further framework modules were developed, includ-
ing an input system using SDL2 that supported game controllers,
keyboard and mouse, as well as helper functions for random num-
ber generation, a particle effects system, and game-based data
structures, such as object pools and quadtrees — altogether cre-
ating a robust starting point for the creation of a game proto-
type. Initial GPF source code can be retrieved this repository:
https://github.com/SteffanHooperUoA/InitialGPF

3.3. Validation of C++ skills with game industry expectations

To encourage learners’ reflection on the C++ skills they had learnt,
they were invited to try the King Pro Challenge mobile appli-
cation (https://apps.apple.com/app/king-pro-challenge/
1d692742660) to test their abilities against industry expectations,
and to join the Forage Electronic Arts Software Engineering
job simulation (https://www.theforage.com/simulations/
electronic-arts/software-engineering-awbf).

4. Reflections and conclusion

One concern each year was how learners would react to the fo-
cus on C++ programming, and whether they were more attracted
to the immediacy of a contemporary GE versus the satisfaction of
crafting their own GPF. The interactions throughout showed that
learners were indeed interested in building their own C++ frame-
work and developing it was possible with third-year learners. The
GPF helped the course achieve its aim of providing practical foun-
dational knowledge using contemporary tools and middleware.

Using middleware and C++ helped to reduce or localise issues


https://wiki.libsdl.org/SDL2/SDL_CreateRenderer
https://github.com/SteffanHooperUoA/InitialGPF
https://apps.apple.com/app/king-pro-challenge/id692742660
https://www.theforage.com/simulations/electronic-arts/software-engineering-awbf

4 of 4 S. Hooper; et al. / Teaching Game Programming in an Upper-level Computing Course

and the possibility of technical debt impacting the course, and the
potential impact of major GE changes was mitigated. The variety
of middleware exposed learners to different APIs, which they were
quickly able to work with. It was enough to be able to use each
middleware for a particular purpose, with complete API mastery
left for later. Further middleware could be integrated to the GPF
based upon game project needs. Learners could also transition to
different GEs after completing the course without being afraid to
experiment, and feeling they had much greater insight into how
commercial engines work.

Introducing Dear ImGui visualisations, alongside data-driven
design techniques, empowered learners to quickly iterate on design
choices. Gameplay elements could be tweaked in real-time while
the game was running, and game and framework code could be
driven with dynamic data, allowing level generation and ease of
refining game design. Having learners see the benefits of exposing
game design behaviours to the immediate mode graphical interface,
where the game design features could be tested or tuned in real-
time at runtime, helped them realise that not having to recompile a
project to adjust design choices was empowering.

Centrally-based university learner surveys were anonymously
conducted at the end of semester with learners asked to comment on
the best aspects of the course — some examples of such comments
were as follows: “Learning C++ in a crash course”, “Learning
game dev and C++ at the same time was a fun challenge”, and
“There was a great learning curve in using C++ with creating
games in this paper which I value greatly and appreciate”.

Acknowledgements

We thank Auckland University of Technology for offering the GPC
— COMP710 Game Programming — and all the GPC students.

References

[AG16] AMADOR, G. and GOMES, A. “A Video Games Technologies
Course: Teaching, Learning, and Research”. The Eurographics Associa-
tion, 2016. DOI: 10.2312/eged. 20161027 2.

[AKO7] AMRESH, A. and KARNICK, P. “Creating Interest in Computer
Graphics by Teaching Game Development”. The Eurographics Associa-
tion, 2007. DOI: 10.2312/eged.20071011 1, 2.

[AP10] ANDERSON, E. F. and PETERS, C. E. “No More Reinventing the
Virtual Wheel: Middleware for Use in Computer Games and Interactive
Computer Graphics Education”. The Eurographics Association, 2010.
DOI: 10.2312/eged.20101013 2.

[CRGO5] COLEMAN, R., ROEBKE, S., and GRAYSON, L. “Gedi: A Game
Engine for Teaching Videogame Design and Programming”. J. Comput.
Sci. Coll. 21.2 (Dec. 2005), 72-82. 1SSN: 1937-4771 1.

[DBEK17] DICKSON, P. E., BLOCK, J. E., ECHEVARRIA, G. N., and
KEENAN, K. C. “An Experience-Based Comparison of Unity and Un-
real for a Stand-Alone 3D Game Development Course”. Bologna, Italy:
ACM, 2017.D0I1: 10.1145/3059009.3059013 1.

[ELGG10] ESTEY, A., LONG, J., GOOCH, B., and GOOCH, A. A. “Inves-
tigating Studio-Based Learning in a Course on Game Design”. Proc. of
the 5th Int. Conf. on the Foundations of Digital Games. Monterey, Cali-
fornia: ACM, 2010, 64-71. DO1: 10.1145/1822348.1822357 2.

[FC20] FACHADA, N. and CODICES, N. “Top-down Design of a CS Cur-
riculum for a Computer Games BA”. Proceedings of the 2020 ACM
Conference on Innovation and Technology in Computer Science Edu-
cation. Trondheim, Norway: ACM, 2020, 300-306. DOI: 10 . 1145/
3341525.3387378 2.

[GS08] GESTWICKI, P. and SUN, F. “Teaching Design Patterns Through
Computer Game Development”. J. Educ. Resour. Comput. 8.1 (Mar.
2008). 1SSN: 1531-4278. DOI: 10.1145/1348713.1348715 3.

[Haull] HAUKKA, S. “Working in Australia’s Digital Games Industry:
Consolidation Report”. ARC Centre of Excellence for Creative Industries
and Innovation and Queensland University of Technology in partnership
with the Games Developers’ Association of Australia (2011) 1.

[IGDO08] IGDA. IGDA Curriculum Framework. Available at https:/ /
web . archive . org/web /20090419214800 / http: //www . igda .
org/wiki/images/e/ee/Igda2008cf.pdf. 2008 1.

[Int23] INTERACTIVE GAMES & ENTERTAINMENT ASSOCIATION. Aus-
tralian Game Development Survey FY 2023 Report. Available at
https://igea.net/wp-content/uploads/2023/12/AGDS-2023-
Report-Final.pdf. 2023 1.

[Ken16] KENWRIGHT, B. “Holistic Game Development Curriculum”.
SIGGRAPH ASIA 2016 Symposium on Education. SA ’16. Macau:
ACM, 2016.D01: 10.1145/2993352.2993354 1.

[MP09] MORRISON, B. B. and PRESTON, J. A. “Engagement: Gaming
throughout the Curriculum”. Proceedings of the 40th ACM Technical
Symposium on CS Education. SIGCSE ’09. Chattanooga, TN, USA:
ACM, 2009, 342-346.DOI1: 10.1145/1508865.1508990 1.

[NZG22] NZGDA. NZ Interactive Media Industry Survey 2022.
https://nzgda.com/news/nz-interactive-media-industry-
survey-2022/. [Accessed 22-Jan-2024]. Nov. 2022 1.

[PKRO6] PARBERRY, I., KAZEMZADEH, M. B., and RODEN, T. “The Art
and Science of Game Programming”. Proceedings of the 37th SIGCSE
Technical Symposium on Computer Science Education. Houston, Texas,
USA: ACM, 2006, 510-514. pOI: 10.1145/1121341.1121500 1.

[PNS*08] PARBERRY, I., NUNN, J., SCHEINBERG, J., et al. “SAGE: A
Simple Academic Game Engine (Extended Abstract)”. (Jan. 2008) 1, 2.

[REO7] RODEN, T. E. and ETHEREDGE, J. “Educating game program-
mers”. Message from the Program Committee Chair (2007), 80 1, 2.

[Rit09] RITZHAUPT, A. D. “Creating a Game Development Course with
Limited Resources: An Evaluation Study”. ACM Trans. Comput. Educ.
9.1 (Mar. 2009). DOI: 10.1145/1513593.1513596 2.

[SHS*08] STURTEVANT, N. R., HOOVER, H. J., SCHAEFFER, J., et
al. “Multidisciplinary Students and Instructors: A Second-Year Games
Course”. SIGCSE Bull. 40.1 (Mar. 2008), 383-387. 1SSN: 0097-8418.
DOI: 10.1145/1352322.1352269 1.

[SP23] SOBOTA, B. and PIETRIKOVA, E. “The Role of Game Engines
in Game Development and Teaching”. Aug. 2023. pOI: 10 . 5772/
intechopen.1002257 2.

[The23] THE JOINT TASK FORCE ON COMPUTING CURRICULA (ACM)
(IEEE-CS) (AAAI). CS Curricula 2023 Version Gamma. Available at
https://csed.acm.org/wp-content/uploads/2023/09/Version-
Gamma .pdf. 2023 1.

[TN22] TUNNEL, R. and NORBISRATH, U. “A Survey of Estonian
Video Game Industry Needs”. Journal of Education and Learning 11.5
(2022), 183-192 2.

[UKW22] UNTERGUGGENBERGER, J., KERBL, B., and WIMMER, M.
“The Road to Vulkan: Teaching Modern Low-Level APIs in Introduc-
tory Graphics Courses”. The Eurographics Association, 2022. DOI: 10.
2312/eged.20221043 2.

[WCS*18] WUNSCHE, BURKHARD C., CHEN, ZHEN, SHAW, LINDSAY,
et al. “Automatic assessment of OpenGL computer graphics assign-
ments”. Proc. of the 23rd Conf. on Innovation and Technology in Com-
puter Science Education (ITiCSE 2018). New York, NY, USA: ACM,
2018, 81-86.DOI: 10.1145/3197091.3197112 2.

[Wil01] WILKENS, L. “A multi-api course in computer graphics”. Journal
of Computing Sciences in Colleges 16.4 (2001), 6673 2.

[ZLS08] ZYDA, M., LACOUR, V., and SWAIN, C. “Operating a com-
puter science game degree program”. Proceedings of the 3rd interna-

tional conference on Game development in computer science education.
2008, 71-75 1.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.


https://doi.org/10.2312/eged.20161027
https://doi.org/10.2312/eged.20071011
https://doi.org/10.2312/eged.20101013
https://doi.org/10.1145/3059009.3059013
https://doi.org/10.1145/1822348.1822357
https://doi.org/10.1145/3341525.3387378
https://doi.org/10.1145/3341525.3387378
https://doi.org/10.1145/1348713.1348715
https://web.archive.org/web/20090419214800/http://www.igda.org/wiki/images/e/ee/Igda2008cf.pdf
https://igea.net/wp-content/uploads/2023/12/AGDS-2023-Report-Final.pdf
https://doi.org/10.1145/2993352.2993354
https://doi.org/10.1145/1508865.1508990
https://nzgda.com/news/nz-interactive-media-industry-survey-2022/
https://doi.org/10.1145/1121341.1121500
https://doi.org/10.1145/1513593.1513596
https://doi.org/10.1145/1352322.1352269
https://doi.org/10.5772/intechopen.1002257
https://doi.org/10.5772/intechopen.1002257
https://csed.acm.org/wp-content/uploads/2023/09/Version-Gamma.pdf
https://doi.org/10.2312/eged.20221043
https://doi.org/10.2312/eged.20221043
https://doi.org/10.1145/3197091.3197112

