EUROGRAPHICS 2021/ B. Sousa Santos and G. Domik

Education Paper

Teaching Computer Graphics During Pandemic using Observable
Notebook

Sumanta N. Pattanaik and Alexis Benamira

Department of Computer Science
University of Central Florida, Orlando, USA

Abstract

Most schools and colleges around the world have resorted to remote teaching during this Covid-19 pandemic. Faced with
this challenge we experimented with a novel supplement to standard video lecturing to teach our normal face-to-face large
undergraduate graphics class (close to 150 students). This supplement involved using Observable notebook, and turned out to
be very effective for remote teaching. We wish to continue its use even after college life turns normal, and would like to share
our experience with the community and encourage such use for teaching introductory computer graphics courses.

Categories and Subject Descriptors (according to ACM CCS): K.3.2 [Computer Graphics]: Computer and Information Science

Education—

1. Introduction

Teaching Computer Graphics involves teaching diverse topics such
as mathematics, physics (optics), and programming, which in itself
is not much different from teaching any other engineering field.
However, the challenging part of teaching computer graphics is
that many enrolling in a computer graphics class do not have the
required preparation in basic vector and matrix algebra and op-
tics. To make things more complicated, making a connection with
the concepts in these topics to rendered visuals is not very intu-
itive, at least in the beginning. Furthermore, even though most have
some programming background, they do not have any experience
with writing relatively large programs required for even simple
3D rendering. Multiple approaches have been used by instructors
to address this challenge. These approaches may be categorized
as bottom-up, top-down, and hybrid approaches. For a brief de-
scription of these categories, the reader may refer to [SWL17]. For
our Fundamentals of Computer Graphics class, our approach may
be considered as bottom-up. It starts with teaching vector algebra
and transformations and then proceeds to cover rasterization-based
rendering pipeline, shader programming, fragment shade compu-
tation using light-matter interaction models, texturing, post-shader
fragment operations, interactive rendering, and ends with a final
project. Teaching all these concepts requires extensive use of white-
board illustrations, interactive demonstrations, and multiple hands-
on practice sessions, all of which could be well managed with face-
to-face teaching and lab sessions. Since the release of the OpenGL
port of JavaScript, WebGL [Khr17] has become our choice of 3D
graphics programming API for interactive real-time rendering in
a platform-independent way. The use of WebGL has no doubt re-
quired us to spend additional lab hours on teaching basic HTML

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

DOI: 10.2312/eged.20211007

and JavaScript. However, this additional effort is well justified be-
cause its integration with HTML Canvas and JavaScript allows the
students to design interactive rendering applications without resort-
ing to any external library download and setup effort [Ang17]. The
Covid-19 pandemic has forced educational institutions worldwide
to resort to remote teaching. The face-to-face classroom teaching
has been replaced by video lecturing using Zoom or a similar video
conferencing app. Video lecturing has allowed instructors to de-
liver the lectures in real-time, record their lectures and release them
to the students for their reference at their own time. It has also
made scheduling office hours (one-to-one meetings) relatively eas-
ier. However, such a mode of instruction has become plagued with
numerous problems. If we ignore technical and technological prob-
lems, the major problems faced by instructors and students have
been the lack of personal interaction and the difficulty in engaging
the students remotely. These latter have been detrimental for effec-
tive teaching topics in technical areas and have been a major source
of disappointments among the students. So the instructors have re-
sorted to developing supplements to the video lecturing for allevi-
ating the problem. We describe here our supplemental approach for
remote teaching of our undergraduate level fundamentals of Com-
puter Graphics class.

2. Methodology

Two main ingredients of our approach are: (i) Use of Observable
notebook for interactive illustrations and algorithm demonstrations,
(ii) use of REGL-WebGL framework on Observable notebook for
graphics programming. We explain below the reason behind such
uses.

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

https://doi.org/10.2312/eged.20211007

48 S. Pattanaik & A. Benamira / Teaching using Observable Notebook

2.1. Observable Notebook

Observable notebook is a computational notebook that shows as
a document on browsers [A*19]. It is a new addition to other ex-
isting notebooks such as Jupyter [PG], RNotebook [McP16] that
are receiving acceptance as excellent tools for teaching. Observable
notebook shares the features of other notebooks in that a notebook
page is composed of computation cells, but differs in most other
aspects. Observable notebook pages are composed of a single type
of cell, code cell. Each cell holds a single JavaScript statement or a
block of statements. Every cell returns a value. The cell containing
a block of statements must contain a return statement to return a
value computed in the code block, otherwise it returns undefined.
The cell may define a function as well. The cells are executed by
the client browser first when the page is opened. The output of the
cell appears above the cell. The cell code that produces it appears
below. The code can be made visible or invisible by the viewer. The
output of a cell can be any rendered HTML element: image, illus-
tration in Canvas or as SVG element, formatted text; an interaction
widget; a number; a string; a function; or a JavaScript object. A cell
can be added to the opened notebook by the notebook viewer. Any
cell appearing on the notebook can be edited by the viewer as well.
The cell code is executed automatically once it is created or edited.
The cell results can be named and accessed as constants by other
cells on the notebook page. Unlike other computational notebooks
in which code in notebooks is typically executed interactively, one
cell (or block of cells) at a time, Observable notebook cells are reac-
tive. Observable notebook cell names can be accessed as constants,
in any order and the change in their values trigger the re-execution
of all the cells that use the cell names. The JavaScript code in the
cell uses an extended version of JavaScript that has a built-in li-
brary to create HTML input and output elements. For example: it
can use DOM library object to create HTML and SVG elements;
it can use independent functions such as html to create HTML el-
ement, md (for Markdown) to create formatted HTML paragraph,
svg to render SVG, and fex to render Latex. Using require the note-
book allows the import of JavaScript libraries that are published
through NPM and using import it allows the import of code and
data from other published notebooks into the current notebook.

Observable notebook is designed for rendering data. Rendered
data, maybe an SVG plot, an HTML table, a Context2D or We-
bGL rendering on a Canvas. 2D libraries such as D3 [Bos20]
and 3D libraries such as ThreeJS [(Mr20] are being widely used
for rendering data on web pages. Such data rendering capabili-
ties make the Observable notebook ideal for creating static and
interactive illustrations and renderings along with written expla-
nations using HTML and Markdown and Latex formatting capa-
bilities. JavaScript Code broken down into small code snippets in
independent cells makes it easier for the viewer to navigate, under-
stand and debug complex rendering concepts. Independent editing
capabilities allow the viewer to modify the data/code to see their
immediate effects on the rendered visual elements and thus facili-
tate learning. The concepts of interactive Code editing and viewing
are not new. Tools like JSFiddle [KZ20], CodePen [Coy20] allow
the user to edit the code and see the effect results side by side on
the browser. However, the fine granularity provided in the form of
cells and the capability to show the result of independent execution

of the cell makes the Observable notebook a much better tool for
learning.

2.2. REGL: A WebGL Wrapper

WebGL is the JavaScript binding of OpenGL ES API. WebGL con-
forms to OpenGL ES2 and ES3 standards. It is designed to run on
browsers to carry out GPU accelerated 2D/3D rendering on HTML
Canvas. WebGL is currently natively supported by all browsers.
Because of the OpenGL ES compatibility and browser support,
a WebGL-powered HTML page runs on any smart platform. A
WebGL program has a control code component that is written in
JavaScript to prepare the data for GPU pipeline and to interface
with GPU driver to pass data and control commands. It also has a
shader code component that is written in GLSL to carry out actual
rendering in GPU. Hence WebGL programming is time-consuming
and has a steep learning curve. A number of utility libraries have
been developed [Seg] to encapsulate both these coding parts into
simpler function calls to make WebGL-driven rendering applica-
tion development easier. However, full-encapsulation, as is done in
ThreelS, takes developers farther away from the fundamental ren-
dering concepts and WebGL programming, and focuses more on
the application development. So we decided to use a utility library
that encapsulated only the verbose coding part (control coding). Of
the available choices we chose REGL, a WebGL wrapper [L*],
that provides an object orietned abstraction to simplify the com-
mand part into an object. From this abstraction, it internally creates
a function that includes all the required WebGL states and draw
calls, which can be used for rendering. The user must write the full
shader code to carry out any rendering. Figure 1 lists a typical code
template for mesh drawing using REGL.

const drawMesh = regl ({
frag: ‘...Y,
// Multiline Fragment shader code in GLSL
vert: ‘...Y,
// Multiline Vertex Shader code in GLSL
attributes: {

<attribute name> : <data array>,
// Prepares data buffer and connects

// shader attribute to data buffer.

}I

uniforms: {
<uniform variable name> :
// Sets the shader uniforms with value.

<value>

// Dynamic setting at draw time is possible.

o

count: <number of vertices in the mesh>

1)
regl.clear ({color: [...]}) // Clear Canvas

drawMesh () ;
// WebGL states and draw calls are instantiated
// to initiate shader execution and rendering.

Figure 1: Sample REGL renderable template.

The object-oriented abstraction removes the overwhelming de-
tails of the control programming and focused mostly on the shader

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

S. Pattanaik & A. Benamira / Teaching using Observable Notebook 49

programming and data directly, and hence makd it easier to adapt
for my class students most of whom had sufficient OO Program-
ming background. REGL’s low footprint on Observable notebook
collections also made it an attractive choice for the class, because
it enforced learning by forcing the students to go over the sample
notebook pages supplied in the class to complete their assignment,
instead of passing on an existing notebook page as their own work.

2.3. Notebook Pages as Teaching Supplement

We created several interactive illustrations and practice WebGL
notebooks. Most of the illustrations were created using D3 library
(a 2D drawing API) or using D3 based functions imported from
other published notebooks. The illustration notebooks were de-
signed to enforce learning of basic concepts, such as vector al-
gebra, transformations, the functioning of reflection models. Prac-
tice WebGL notebooks were created to teach WebGL programming
and some of the basic shading concepts. WebGL notebooks used
REGL, and hence contained mostly data, shader code and interac-
tion widgets, and the rendered output. The students were required
to extend them as a part of their weekly assignments. All the note-
books were used for interactive demonstrations during Video lec-
turing. The illustration and practice WebGL notebooks were re-
leased to the class before the class hour so that the students could
use them during the class, interact and modify them as the concepts
were covered, and ask for clarification if required. Hence, they
served as practice lessons. Weekly assignments were also demon-
strated using the notebook and discussed in the class but were re-
leased only after the assignments were due to let those who had dif-
ficulty completing a particular assignment catch up with the class
and continue with subsequent assignments.

We list here the main categories of notebook pages that
we created for the course. All the notebooks listed here
and many more are published, and are freely available as
a collection from https://observablehq.com/collection/
@spattana/class-4720 [Pat20a].

e Vector Algebra and Transformations: We created interactive
pages to illustrate the concept of coordinates and vector oper-
ations. Figures 2, 3, 4 show the screenshots from http://bit.
1ly/2PRsEQE and http://bit.1ly/201DVPQ that illustrate vec-
tors and vector operations in 2D. Figure 5 shows the screen-
shots from http:http://bit.ly/30CoTaV and http://bit.
1ly/3rJPjmJ that illustrate 3D rotation transformations. Rota-
tion transformations were covered after we covered basic We-
bGL rendering of 3D objects. So, the illustrations were associ-
ated with 3D rendering and the REGL-WebGL code. Though
transformation matrices and their computations were covered in
the lectures, we encouraged the students to use functions from
gIMatrix library [J*] to avoid any unforeseen coding error intro-
duced by the students while computing them for assignments.

e WebGL graphics rendering pipeline and WebGL rendering:
These pages illustrate the basic functioning of WebGL ren-
dering pipeline and basic WebGL rendering. Figure 6 shows
screenshots from http://bit.ly/3bIfAwj and http://bit.
ly/3rECmeS5 that illustrate the mathematical concept of barycen-
tric coordinates along with its application in the rasterization and

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Vector and its components.

Note: Pull the Arrow head to change the value of vector.

Vector v : {ﬂ in left plot, and vector w : { 2‘1 in right plot.

Vector Addition and Subtraction.

oo L]
e[}

Vector Scaling

Left: v x scale Factor = [ﬂ *1.5 = [3 }

Right: w * scale Factor = [73] *1.5 = [74’5]4

Chaose scale factor

6 5 -4 3 2 12 3 4 5 6 6 5 -4 3 2 12 3 4 5 6

Figure 2: Vector Operations.

interpolation of the varying variable along the pipeline and in-
troduce the concept of aliasing. Figure 7 from http://bit.ly/
38yCiF2 introduces the basic WebGL rendering steps starting
with clearing the canvas and changing uniforms for interactive
changes in the rendered view.

Light and Reflection Models and Shade Computation: We cre-
ated a number of illustrations to introduce light types and light-
matter interactions. Figures 8, 9, 10 show the screen-shots of the
2D illustrations of the concepts from http://bit.1ly/31bdvfD,
http://bit.ly/3bGnwxZ, and http://bit.ly/3bGxTC8. We

https://observablehq.com/collection/@spattana/class-4720
https://observablehq.com/collection/@spattana/class-4720
http://bit.ly/2PRsEqE
http://bit.ly/2PRsEqE
http://bit.ly/2OlDVPQ
http:http://bit.ly/30CoTaV
http://bit.ly/3rJPjmJ
http://bit.ly/3rJPjmJ
http://bit.ly/3bIfAwj
http://bit.ly/3rECme5
http://bit.ly/3rECme5
http://bit.ly/38yCiF2
http://bit.ly/38yCiF2
http://bit.ly/3lbdvfD
http://bit.ly/3bGnwxZ
http://bit.ly/3bGxTC8

50 S. Pattanaik & A. Benamira / Teaching using Observable Notebook

Dot Product and shortest angle.

The shortest angle shown (in green) between two vectors:
87
Left between vand w: § = cos™* (ﬁ) = 1.6rad = 90°.

113

Right between v+wand v-w: f = cos ™! (([

W> P

(83 9490 1 g=00

Figure 3: Dot product and its relation with the angle between two
vectors.

also created notebooks to demonstrate shade computation in the
fragment shader. However, instead of sharing them immediately
we supplied a basic WebGL rendering with camera support and
tasked the students to code all the lighting concepts as consecu-
tive weekly assignments.

e Texture Mapping: We created and shared a texture rendering
notebook (see Figure 11 from http://bit.ly/31dzhum) for
material property and surface roughness variation, and a note-
book for skybox rendering using cubemap textures (see Fig-
ure 12 from http://bit.1ly/38R0pcW). Students were tasked
to use them for their rendering assignments with complex 3D
models, and for environment mapping.

e Post-Fragment Shader operations: We created and shared note-
books to illustrate the use of stencil buffer (Figure 14) and
depth buffer, color buffer, and blending (see http://bit.ly/
2NhoIlC), and their use for mirror reflection and shadow pro-
jection rendering (Figure 13) (see http://bit.ly/3cuidyW).
These latter ones served as the last weekly assignment of a total
of ten weekly assignments in which the students were asked to
choose any one of the two concepts (mirror reflection or shadow
projection) for rendering.

e Miscellaneous: In addition to those mentioned above, we cre-
ated a number of other notebook pages that served as illustra-
tions for demonstrations during the lectures. The screenshots of
some of those illustrations are shown in Figure 15 that were used
during the lectures on clipping and shadow volume algorithm
(See http://bit.ly/3qGgabn, http://bit.1ly/3cqhgIh and
http://bit.ly/3v1tMDd);in Figure 16 (see http://bit.ly/
38DhmwV and similar notebook pages) on color models that were
used in two full lectures devoted to discussing color concepts. A
few more pages that described the concepts of parametric curves
and surfaces, and of Scenegraph, animation, and instancing are
not shown in this paper. All the notebooks are available as a col-
lection from [Pat20a].

3. Discussion

The supplements discussed in the previous section may look like
pages of another Web-based tutorial. There are several tutorial Web
pages out there that illustrate fundamental concepts and also pro-
vide an interactive experience. Those tutorials may be considered
as online replacements or supplements of textbooks with interac-
tion as the added component. Observable notebook-based supple-
ments that we advocate in this paper may be considered as the on-
line replacement of practice workbooks. The cells in any notebook
can be modified to instantly see the changes. The cell results ap-
pear above the cell and can be inspected without resorting to any
special effort, such as writing additional debug print statements
(console.log on JavaScript) and looking around in the console to
find the results. A local copy of any notebook can be forked to ex-
periment with new data, with extensions of the code, and can be
saved for future use. Though it is not impossible to do the latter
with existing Web-based tutorials, it is not as simple as what Ob-
servable notebooks make. The notebooks once published (a single
click) become available to anyone with browser access on any plat-
form. The developer of the notebook does not have to create his/her
own server to host the notebooks. The import facility allows an in-
structor to create his/her own modifications to match with his/her
own style of teaching. Thus, Observable notebook-based teaching
helps in creating, updating, sharing, and reusing teaching resources
easier.

Every class has a distribution of students, some of whom
progress on their own, and some need extra help to make progress.
That is why the instructor sets aside office hours to meet and help
those students. However, for various reasons only a few students
ask and get that help. Even when the student meets the instructor,
it is a little time-consuming to look over the student’s shoulder to
find out where the student’s code may not be performing correctly
on his/her computer. Transferring the JavaScript-HTML page to the
instructor’s computer for debugging is even more time-consuming
and frustrating. Observable notebook made this task much eas-
ier. Exactly like publishing, an Observable notebook can be made
sharable instantly with a single click and the link can be shared with
the instructor. The cell-wise break-up of the code and availability
of cell results for viewing helps in locating the errors in the code
block faster. We made use of this facility throughout the semester.
We are pleased to say we were able to meet one-to-one (remotely)
and help a much larger fraction of the students than we were ever
able to during our normal semester teachings. The students also
felt very satisfied. From our informal feedback session at the end,
we gathered that the students believed they learned better from this
mode of teaching and interaction.

The advantages of the Observable notebook that we mentioned
in the previous paragraph also made the grading of our large class
easier. Our course had weekly programming assignments. For each
assignment, we either supplied a template notebook page that the
student forked, or required that the students extended their previ-
ous week’s assignment to complete the current week’s assignment.
As publishing a notebook makes it available to any web user, to
avoid plagiarisation we required that the students made their note-
book link sharable only (not publish), and submit the notebook
link as a part of the submission. The observable notebook allows

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

http://bit.ly/3ldZhum
http://bit.ly/38AQpcW
http://bit.ly/2NhoI1C
http://bit.ly/2NhoI1C
http://bit.ly/3cuiJyW
http://bit.ly/3qGqabn
http://bit.ly/3cqAgIh
http://bit.ly/3vltMDd
http://bit.ly/38DhmwV
http://bit.ly/38DhmwV

S. Pattanaik & A. Benamira / Teaching using Observable Notebook 51

resource access through direct URL fetch and through file attach-
ments, where files were stored in the Observable server cloud. So
we did not face any problem of missing data or resource files dur-
ing the assignment evaluation. As for the file attachment, there is
no restriction on the type of file, but there is a size restriction of
15MB per file. The size restriction did not cause any problem for
the assignments.

For final group projects, the students from each group were
tasked to work, complete, and submit their work using a single
Observable notebook. Observable allows group collaboration on
a notebook using its real-time multiplayer editing and comment-
ing facility [B*]. However, this latter feature requires a feepaying
membership. Though membership cost is small for the duration of
the project (about a month) we encouraged the students to collabo-
rate through forking and merging. Of a total of fifteen projects (with
an average of about ten students per project) to our knowledge,
only one group resorted to a fee-paying multiplayer editing facil-
ity, whereas the rest worked on the project using fork and merge.
None of the groups complained of any inconvenience in such use.
Only one of the projects (large point cloud viewing) had to reduce
their data size because of the size restriction of the local file attach-
ment. The class projects are all published and are available as an
Observable notebook collection [Pat20b].

4. Summary

We used Observable notebook for creating and sharing supplemen-
tary teaching material for effective remote teaching of fundamen-
tals to Computer Graphics. Though we have not carried out any
formal study to measure the effectiveness, we gathered from the
end of the class informal feedback session that students were satis-
fied with the shared supplementary material, the improved quality
of teaching, and one-to-one attention. They felt that similar use of
Observable notebooks in other courses would be helpful. Observ-
able notebook use certainly helped us in teaching and grading.

We created close to 30 notebooks for the class during the course
of the semester, most of which were developed during the Fall
semester itself. We have added more since then. We plan to con-
tinue using the created materials even after the semester teaching
gets back to normal. We do not claim that the created course sup-
plements are sufficient but would continue adding newer notebook
pages to fill in the gaps. The created materials are all published
in an Observable notebook collection [Pat20a] and hence are freely
available to anyone interested in using them. We encourage instruc-
tors to use them, create more and share with others in the commu-
nity.

References

[A*19] ASHKENAS J., ET AL.. Observable User Manual, 2019.
URL: https://observablehq.com/@observablehqg/
user-manual. 2

[Angl7] ANGEL E.: The case for teaching computer graphics with we-
bgl: A 25-year perspective. IEEE CG&A March/April (2017), 106-112.
1

[B*] BOSTOCK M., ET AL.. Observable Teams. URL: https://
observablehq.com/teams. 5

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

[Bos20] BosTOCK M.: D3: Data Driven Documents, 2020. URL:
https://d3js.org/. 2

[Coy20] COYIER C.: CodePen: Online Code Editor and Front End Web
Developer, 2020. URL: https://codepen.io/. 2

[J*] JONES B.,ET AL.: gIMatrix.js. URL: http://glmatrix.net/.
3

[Khr17] KHRONOS W. W. G.: WebGL2: Web 3D Graphics Library,
2017. URL: https://www.khronos.org/webgl/. 1

[KZ20] KRAWCZYK O., ZALEWA P.: JSFiddle: An online IDE, 2020.
URL: https://jsfiddle.net/. 2

[L*] LYSENKO M., ET AL.: Regl Project. URL: https://github.
com/regl-project/regl. 2

[McP16] MCPHERSON J.: R Notebooks,2016. URL: https://blog.
rstudio.com/2016/10/05/r-notebooks/. 2

[(Mr20] (MR.DOOB) R. C.: Three.js — JavaScript 3D library, 2020.
URL: https://threejs.org/. 2

[Pat20a] PATTANAIK S.: Computer Graphics Fundamentals, 2020. URL:
https://observablehqg.com/collection/@spattana/
class—-4720.3,4,5

[Pat20b] PATTANAIK S.: Fall Computer Graphics Funda-
mentals Class project Collection, 2020. URL: https:
//observablehqg.com/collection/@spattana/
cap-4720-2020-class-projects. 5

[PG] PEREZ F., GRANGER B.: Project Jupyter. URL: https://
Jjupyter.org/. 2

[Seg] SEGUIN D.: WebGL ~ WebGPU frameworks li-
braries. URL: https://gist.github.com/dmnsgn/
76878ba6903cf157890712464875cfdc. 2

[SWL17] SUSELO T., WUNSCHE B., LUXTON A.: The journey to im-
prove teaching computer graphics: A systematic review. In International
Conference on Computers in Education (2017). (Proc. Eurographics’17).
1

https://observablehq.com/@observablehq/user-manual
https://observablehq.com/@observablehq/user-manual
https://observablehq.com/teams
https://observablehq.com/teams
https://d3js.org/
https://codepen.io/
http://glmatrix.net/
https://www.khronos.org/webgl/
https://jsfiddle.net/
https://github.com/regl-project/regl
https://github.com/regl-project/regl
https://blog.rstudio.com/2016/10/05/r-notebooks/
https://blog.rstudio.com/2016/10/05/r-notebooks/
https://threejs.org/
https://observablehq.com/collection/@spattana/class-4720
https://observablehq.com/collection/@spattana/class-4720
https://observablehq.com/collection/@spattana/cap-4720-2020-class-projects
https://observablehq.com/collection/@spattana/cap-4720-2020-class-projects
https://observablehq.com/collection/@spattana/cap-4720-2020-class-projects
https://jupyter.org/
https://jupyter.org/
https://gist.github.com/dmnsgn/76878ba6903cf15789b712464875cfdc
https://gist.github.com/dmnsgn/76878ba6903cf15789b712464875cfdc

52 S. Pattanaik & A. Benamira / Teaching using Observable Notebook

Rotation Matrix Rotations
Rotation by Angle 107: Left: Rotation of vector [ﬂ , Right: Rotation of vector [;3] Aircraft Principal Rotations:
An aireraft in flight is free to rotate in three dimensions:
107 o o yaw: nose left or right about an axis running up and down;
i \ N N pitch: nose up or down about an axis running from wing to wing; and
° roll: rotation about an axis running from nose to tail.
“ “ See Wiki.
N 25 N
N (@ 2 Yaw Pitch Roll
o — o — 20 — 60
T " g Nose Lefi/Right: Rotate along Y-axis Nose Up/Down: Rotate along X-axis Rotate along Z-axis
5 5 4 5 2 4 IR EEEEE T2 3 4 5 %
1 A
2] 1
a4 34
85
44 P
5] 54
6 6
Rotate(w) — [0 im0 [0296 0.955) [2] [35
O = |sind cost | VT | 0.955 —0.206) 3] T | 1 |
Rotate(w) cos) —sind —0.296 —0.955 3] _[-1
otate(®) = |ging cost | T | 0.955 0208 *| 2| = | 35)°
Scale Matrix
Nonuniform scaling applied to: Left: vector [ﬂ , Right: vector [723}
xFactor yFactor
— 1.8 g 0.5
6 6 "
. . Rotor Quaternion
o o Rotor quaternion g = (sin(6/2) * axis, cos(#/2)) represents rotation around a
34 (29) 3 normalized vector "axis" by angle "6".
2q (3615 {22 2 A vector v can be rotated using a rotor quaternion using the following quaternion
" F5gthrs T product:
£ 5 4 5 24 HE R EEEERE HIE T R A g * v xconj(q)
1 1]
N N This product may be converted to a 3x3 rotation matrix for its use in WebGL
N 2 pipeline. As an alternative to computing a rotation matrix followed by matrix
4 4 multiplication, the following relation may also be used to directly transform the
5 5 vector using the rotor quaternion: (assumes a vec4 representation of quaternion)
o e g *v=*conj(q) = v+ 2.0 x cross(q.zyz, cross(q.zyz,v) + q.w * v)
Scale(v) = [zFactor 0 } o [1.8 0] . [2] _ [3.6] See the placement of rotated discs around a unit sphere using rotor quaternion.
- 0 Fact 10 05 3 15]" . . P .
ylactor A disc of radius 0.1 on XY plane and centerd at origin, is oriented and placed at
_ [zFactor 0 _[18 0 -3] _[-54 different locations on the surface of a unit sphere.
Scale“")*[0 yFactar] rw= [0 0.5} *[2] *[1]

Normal Matrix is Inverse Transpose of Model Matrix!

1 0. .
0 18 is applied to the

quadrilateral shown in the plot below. The vector [0'5 drawn in red is the normal /’ ’ ’

0.9

A simple non-uniform scaling transfomation [

0.7 0.5
normal vector correctly transformed using Inverse Transpose of the model Matrix

vector [] transformed using Model Matrix, and the vector [] in blue is the

[1 0] so that it remains perpendicular to the edge of the quadrilateral.

0 0.556
e—)1 ——) 1.8
Change X Scale Change Y Scale

Figure 5: 3D Rotations and Quaternion for Rotation.

Figure 4: 2D Transformation Matrix and Transformation Matrix
for normal vector:

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

S. Pattanaik & A. Benamira / Teaching using Observable Notebook

Barycentric Coordinates of a point on a plane.

Three points define a triangle and also define an infinite plane extending beyond the
triangle.

Given three points P0, P1 and P2 on a plane, any point P on the plane can be
expressed as affine combination of the points as

P = (1-a-B)*P0 + a*P1 + *P2

where («, 8) may be considered as the Barycentric Coordinates of the point P with
respect to PO, P1 and P2. (Note that the coordinates of P will change if the position of
the three basis points change.)

«and f3 can take any value, can be positive or negative.

Here are some important properties of («, f):

* (a, f)=(0,0): P = PO,

o (a, f)=(1,0): P=P1,

* (@, p)=(0,1): P=P2,

e =0,0<B<1:Pis on the edge PO_P2,

« 0<a<1,B=0:Pison the edge PO_P1,

« 0<a<1,0<B<1,0<a+f<1:Pisinside the triangle
« otherwise: P is outside the triangle.

Vertex0: Color Vertex1: Color Vertex2: Color

#Ffo000 E #00fF00 E #0000FF
—] — 0.2
« B

Rasterization & Interpolation

Vertex0: X Vertex0: Y Vertex0: Color
— 477 ® 000
Vertex1: X Vertex1: Y

—— 59

—— 159

WebGL rendering of Triangle Mesh

Flat color rendering of primitives.
Use of Position attribute of vertex

53

W #rrooce
Vertex1: Color
 seotree
Vertex2: Color

Vertex2: X Vertex2: Y
[} 000 —— 400 B #0000

Let the user Specify Color.
PointSize . (Use of Uniform)

Choose Primitive Color

#c59191

This color picker starts out black

Figure 6: Barycentric Coordinates, Rasterization and Interpola-

tion. Figure 7: Basic WebGL rendering steps.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

54 S. Pattanaik & A. Benamira / Teaching using Observable Notebook

Diffuse lighting: Lambert Cosine Model.

Light Orbiting around the center.

® Directional) Point — 6 — 30

Choose Lighting mode Distance from Origin Light Angle to Y Axi.

Note: For Directional light distance of the source is assumed to be infinity. So it is
unaffected by "Distance from Origin’ parameter.

Diffuse lighting: Lambert Cosine Model.

Light Orbiting around the center.

Directional ® Point

Choose Lig

Note: For Directional light distance of the source is assumed to be infinity. So it is
unaffected by "Distance from Origin" parameter.

Figure 8: Light Models and Diffuse Reflection.

Specular lighting Model

 Phong Specular Model ® Blinn-Phong Specular Model - B

ecular Reflection model Specular Exponent

e of

umed to be e=. So reflection is unaffected by "Distance from Origin".

ly orbit around origion. Note: For Directional light, dista

the source is a

© Point Light

Directional Light ——— 20

Light Distance from Origin

¥
Wiy

® Point Light O Directional Light

Choose Lighti

Figure 9: Light Models and Specular Reflection.

SpotLight and its effect in Lighting.

-4 6.5 15 s
Light Position on Horizontal Plare. Spot Look At Point on X-axis, Spot angle Fallof Exponent
© Lembertian Model) Blinn-Phong Specular Model - s

Choose Specular Reflection model Specular Rxponent (does not affect Tambertian Model)

SpotLight and its effect in Lighting.

— —
-4 0.5 B3 5
Light Position on Horizontal Plane. Spor Look At Point on X-axis, Spotangte. Fallof Exponent

Blinn-Phong Specular Model s

cetion model Specular Txponent (does not affect Tambertian Model)

Figure 10: Spot light.

Texture and Normal Mapped Rendering

Figure 11: Texture and Normal mapped Rendering.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

S. Pattanaik & A. Benamira / Teaching using Observable Notebook 55

Environment Mapping Demo Stenciling Example

O Triangle O Text @ Snow Flake

Choose a Stencil Pattern

@®© Show Stencil Pattern O Show Textured Cube Over the Blank Canvas O Draw Textured Cube Over over the Stencil

Choose render option

Figure 12: Environment Mapping.

Mirror Reflection without and with Stenciling

Alpha
oasssss——{) 0.5

O Show Stencil Pattern @ Show Textured Cube Over the Blank Canvas O Draw Textured Cube Over over the Stencil

Choose re

der option

S

Enable/disable stencil Enable/disable Blending

@ enable O disable

O enable @ disable

O Show Stencil Pattern O Show Textured Cube Over the Blank Canvas @ Draw Textured Cube Over over the Stencil

Choose render option

Enable/disable stencil Enable/disable Blending

@® enable O disable O disable

Figure 13: Application of Stenciling and Blending.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

Figure 14: [llustration of Stenciling Concept.

56

S. Pattanaik & A. Benamira / Teaching using Observable Notebook

Point In front or back of A Plane

Rotate Normal Vector

— s
.
.
. .
. .
.
.
.
. .
.
. .
.
.
.
.
. ° .

Silhouette Edge

The silhouette edges consist of all edges of a solid that separate a front facing face
from a back facing face.
Choose between solid/wireframe

® Solid view Wife Frame View

The silhouette edges in the canvas are drawn in Red and normal edges are drawn in
Green.

Fragment Inside/Outside Volume

Uses Stencil buffer and Depth pass technique (that is used in Shadow volume
algorithm) to resolve fragments inside or outside a Volume.

The outline of the volume is shown by line drawing. Green vertices of the Volume is
nearer to the camera, Blue are farther. The outline drawing shows the volume.

The darker part of the rotating textured cube is inside the volume and the brighter
part is outside the volume.

Start/Stop Animation

® start stop

Figure 15: Computational Geometry Principles and their applica-
tions.

l @
< &
s

Vertical Cross section of HSL Color Solid.

HSL/HSV Color Wheel

A vertical cross section of the color model through Hue values at 45 and 225

Saturation along Horizontal axis and Lig

s along Vertical axis.

1 09 08 07 06 05 04 03 02 01 0 01 02 03 04 05 06 07 08 09 1

g EEEEEEEE

- EEEEEEEEEEEEEE
« ANNEEEEEEEEEEEEEE

8 AEEEEEEEEEEEE

o ENEEEEEER

8 ENEEN

‘ |

Horizontal Cross section of HSL Color Solid.
Horizontal Cross Section of HSL color model at lightness: 0.3, 0.5, 0.7 respectively

Figure 16: HSL Color Model.

© 2021 The Author(s)
Eurographics Proceedings © 2021 The Eurographics Association.

