EUROGRAPHICS 2020/ M. Romero and B. Sousa Santos

Education Paper

Designing a Course on Non-Photorealistic Rendering

Ivaylo Ilinkin'

I Gettysburg College, USA

Abstract

This paper presents a course design on Non-Photorealistic Rendering (NPAR). As a sub-field of computer graphics, NPAR aims
to model artistic media, styles, and techniques that capture salient characteristics in images to convey particular information
or mood. The results can be just as inspiring as the photorealistic scenes produced with the latest ray-tracing techniques even
though the goals are fundamentally different. The paper offers ideas for developing a full course on NPAR by presenting a
series of assignments that cover a wide range of NPAR techniques and shares experience on teaching such a course at the

Junior/senior undergraduate level.

CCS Concepts

e Computing methodologies — Non-photorealistic rendering;

1. Introduction

Non-Photorealistic Animation and Rendering (NPAR T) is a sub-
discipline of Computer Graphics that has developed a significant
body of work and can be introduced as an independent subject
in the curriculum. While traditionally Computer Graphics has fo-
cused on developing models and algorithms for rendering high-
quality realistic-looking images of everyday scenes that are in-
distinguishable from photographs, NPAR research aims to model
artistic media, styles, and techniques that capture salient character-
istics in the images, and distort or exaggerate features in scenes to
convey particular information or mood. Examples include model-
ing the physical characteristics of paper and paint to turn a photo-
graph into an image of an oil painting, representing brushstrokes to
create an image resembling impressionist painting, simulating pen-
cil drawing to render a technical/medical illustration of 3D objects,
automating cartoon and animation rendering, etc. NPAR also has
connections with Image Processing through algorithms for initial
image analysis and decomposition before applying the particular
rendering technique.

Despite the accumulated body of work in NPAR in the last 20-
25 years and continued active research, NPAR does not appear
to have found a place in the curriculum as a stand-alone course.
Typically the topic is discussed as a component of a computer
graphics course, which does not offer deep exposure to the wide
range of ideas generated in NPAR. Some examples of bringing
NPAR in the curriculum include systems for demonstrating NPAR

T We use the standard abbreviation NPAR, although animation was outside
the scope of this work.

(© 2020 The Author(s)
Eurographics Proceedings (© 2020 The Eurographics Association.

DOI: 10.2312/eged.20201028

algorithms [KNSMO07, Mur04], a Nifty Assignment for generating
ASCII-Art [And17], and a recent paper on teaching image process-
ing for mobile devices through semester-long projects that include
implementation of NPAR algorithms [TPD*18].

The First International Symposium on Non-Photorealistic An-
imation and Rendering in 2000 included a panel on teaching
NPAR [SS00]. The panel noted that "as an emerging area of scien-
tific endeavor, non-photorealistic animation and rendering (NPAR)
can potentially take its place in a computer science curriculum”,
but also observed that "it is a significant challenge to structure in a
formal way the area of NPAR around the methods used", pointing
out that "the image styles vary greatly within the area, for example
from simple-looking black-and-white line drawings to water color
animations". In other words, the wide range of ideas and techniques
makes it difficult to identify a common set that can form the basis
for a one-semester course on NPAR. The panel concluded with a
commitment to "look at approaches to structuring the area’, al-
though it is not clear whether there has been a follow-up meeting
to share recent findings.

This paper aims to contribute to the effort launched in [SSO0], by
suggesting a structure for a one-semester course on NPAR at the ju-
nior/senior undergraduate level. The course is built around a collec-
tion of papers that introduce various NPAR techniques and are fea-
sible to implement as individual assignments in one to two weeks.
The selected papers address the two issues that make it challeng-
ing to design a course on NPAR—breadth and feasibility—while
also maintaining some continuity, such that occasionally there are
connections between papers across assignments.

The design of the course was guided by the following goals:

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

https://orcid.org/0000-0002-0723-637X
https://doi.org/10.2312/eged.20201028

10 Ilinkin / A Course on NPAR

e expose students to original research

e develop skills for reading a research paper to enable understand-
ing of the main concepts and algorithms

e strengthen programming skills by implementing the proposed al-
gorithms

This was an upper-level elective taught at Gettysburg College,
a four-year liberal arts college, as part of the Bachelor’s degree
in a traditional Computer Science program. The prerequisite for
our upper-level courses is Algorithms and Data Structures to en-
sure programming maturity (this is the third course in our program
sequence). The students had taken at least one other upper-level
course, and that might be a good general recommendation, but prior
experience in Computer Graphics does not seem essential.

The course had a seminar-style flipped-classroom structure and
the students were responsible for conducting a significant portion
of the class discussion. The class met twice a week for 75 min-
utes and each week one paper was assigned as class reading. The
students were expected to complete the course assignments indi-
vidually, but for the class discussion component they were paired
randomly each week and each pair worked together to read and un-
derstand the main ideas. During the first class meeting one pair led
a class discussion and made sure that everyone contributed to the
overall understanding of the paper and a possible implementation.
To facilitate the discussion, the pairs were asked to (i) share three
questions or key observations; (i) identify all algorithm param-
eters; and (iii) propose a possible plan for implementation. Dur-
ing the second class meeting the course instructor summarized and
clarified the preceding discussion, offered additional material, and
discussed the setup for the programming assignment. Occasionally,
a paper required an additional day to cover all required concepts.

Note that other arrangements are also possible. For example, an
instructor might prefer to have more control over the discussion
and use a lecture-style setup. In this case it will still be advisable
to assign the papers as readings before class and perhaps gauge the
students’ effort through a short high-level quiz.

The course used Python along with numpy, mainly for vector and
matrix operations, and the Python Imaging Library (PIL), mainly
for drawing lines or points in an image and showing the result.
Python was chosen for its simple syntax, flexible constructs, and
useful support libraries. This allowed the students to focus on the
details of the algorithms and rely on the provided functionality for
basic operations. Our department does not teach Python formally,
but the students were able to pick it up without much trouble.

2. Course Assignments

In this section we describe the course assignments, which serve
as the scaffold for the course. Each assignment introduces a par-
ticular NPAR technique—we identify the original research paper
that motivated the technique, describe the intended outcome and
show results from student work, explain the main ideas behind the
algorithm along with pseudocode, and point out connections with
previous assignments or discuss implementation details.

The pseudocode is Python-like and an effort is made to balance
brevity, precision, and clarity. The hope is that the intended mean-
ing of functions and variables will be clear from context. The goal

is to convey a sense of the overall structure of each algorithm and
convince the reader that the implementation is feasible. The ref-
erenced papers contain the details along with algorithm parameters
and their default values. We would also be happy to share additional
details and actual implementation with interested instructors.

2.1. Assignment 1: Convolution and Edge Detection

The first assignment served as an introduction to basic concepts
in image processing and to programming in Python. The goal was
to implement a collection of Python functions modeled after their
MATLAB counterparts conv2 (convolves two matrices), imfil—
ter (applies a filter to an image), edge (finds edges in an image;
computes gradient direction and magnitude), and fspecial (cre-
ates a pre-defined filter). These are saved in file utils.py and
used in later assignments.

2.2. Assignment 2: Halftoning

The first NPAR assignment was based on a recursive sub-division
technique for producing halftoning effect. Halftoning aims to cap-
ture the global detail in an image using primitive elements (typi-
cally dots) of varying densities or sizes. The algorithm, as described
in [Ahm14], is elegantly simple. It recursively subdivides the in-
put (grayscale) image into two rectangular sub-regions of roughly
equal density; when a user-defined maximum depth is reached, a
dot is placed in the output image at the center of the current region.
Initially, the whole input image is a region R. The density of a re-
gion is the sum of the inverted pixel intensities (i.e. Black pixels
contribute 1 and White contribute 0):

proc Halftone (inImg, outImg, R, depth):
if depth > MAX_DEPTH:
outImg[center (R)] = Black //done
//split R along longer dimension into
//two regions of roughly equal density
R1, R2 = densitySplit (inImg, R)
halftone (inImg, outImg, R1l, depth-1)
halftone (inImg, outImg, R2, depth-1)

~ o U W N

To enhance the halftoning effect [Ahm14] suggests several vari-
ations based on line segments instead of points (Figure 1):

e FEdges — draw the outlines of the final regions

o Tiles — draw only the left and bottom edges of the final regions,
slightly shortened to avoid connecting adjacent regions

e Loops — draw either the vertical or horizontal edges of the final
regions (based on split direction) slightly inset; requires some
bookkeeping to draw short connecting segments across region
boundaries

e Path — connect the centers of the final regions with the path that
solves the Traveling Salesperson Problem (TSP) on the complete
graph of the centers using Euclidean distance as the metric; the

(© 2020 The Author(s)
Eurographics Proceedings (©) 2020 The Eurographics Association.

Ilinkin / A Course on NPAR

m
i

mAt
iIE
s

HI

Points

Edges Tiles

Figure 1: Assignment 2 results.

Figure 2: [Left] Assignment 3 applyDoG computation for single pixel, x, (images from [KLCO7]). [Right] Assignment 3 results.

Concorde TSP solver [ABCC] was used for this step—the stu-
dents only wrote functions to save/load text files of point coor-
dinates and launched the TSP solver from their Python code as a
system command

The algorithm is surprisingly fast even with a naive implemen-
tation of computing the density of a sub-region in the image. Nev-
ertheless, the paper suggests two optimizations: precomputing cu-
mulative density table and using binary search to find the correct
place to split.

The application of binary search and TSP add an extra appeal to
the algorithm. It is rare for our students to see a concrete application
of TSP outside of the Algorithms and Theory courses.

2.3. Assignment 3: Line Drawing

Assignment 3 was based on the work in [KLCO07] and developed
further the concept of gradient and its application to edge detec-
tion from Assignment 1. The goal was to produce a line drawing
by highlighting salient edges in an image (Figure 2). Briefly, the
technique in [KLCO7] works by constructing an edge tangent flow
(ETF) which then guides a difference of Gaussians (DoG) filter
over the image to strengthen and extract the edge information.

proc LineDrawing(inImg, outImg) :

1 Gx, Gy, G = detectEdges(inImg, Sx, Sy)
Tx, Ty = computeTangentField(Gx, Gy, G)
Fx, Fy = computeETF (Tx, Ty)

H = applyDoG(inImg, Ex, Ey)

outImg = threshold (H)

aobd W N

(© 2020 The Author(s)
Eurographics Proceedings (©) 2020 The Eurographics Association.

Line 1, detectEdges, is an application of a Sobel operator
and has already been completed in Assignment 1. Line 2, rotates
the gradient vectors by 90 degrees to compute the tangent field that
guides the process of tracing an edge.

Line 3, computeETF, is one of the novel contributions
of [KLCO7] and its purpose is to smooth the tangent field by re-
aligning the vectors to ensure coherence in the flow. Each tangent
vector, 7, at pixel p is updated as a weighted sum of its neighbors,
1y, in an n x n radial neighborhood Q of p as follows:

et L 07 i wilp.a) wnlp.a) o 7
q€Q(p)

where:

e ¢ gives the sign of the dot product and its purpose is to align the
neighborhood vectors with 7,

e w; evaluates to 1 if ||pg|| < r and to 0, otherwise, so that only
neighbors within radius r are considered

e win(p,q) = .5(1+ranh(n(G[qg] — G[p]))) ensures that neighbors
with higher gradient are given higher weight; 1 is a parameter

e the dot product in the last term gives higher weight to neighbors
whose direction is more closely aligned with 7,

Line 4, applyDoG, is the second contribution of [KLCO7]. The
goal of this step is to strengthen the signal for potential edges by
following a curve cy a short distance away from each pixel x guided
by the smoothed tangent flow from Line 3. The DoG filter is ap-
plied at each step along cy over a line perpendicular to the tangent

12 1linkin / A Course on NPAR

vector at the current point and its purpose is to consider neighbor-
ing regions for edge flow coherence. The process is illustrated in
Figure 2[Left]: For each pixel x we trace a curve along the ETF
by applying an iterative step x <— x + ady, for a user-defined num-
ber of iterations, where oo = +1 and JX is the smoothed gradient
direction at x. Next, at each new position x we use the same ap-
proach to trace a line perpendicular to the curve using the tangent
to the smoothed gradient at x as a fixed direction and compute a
difference of two Gaussians with user-defined std. dev. 6. and ;.
Essentially this step performs line integral convolution where DoG
values are collected along cx.

Line 5, threshold, produces the final image by thresholding
the result of the DoG filter. In terms of implementation, only Line 4
is a bit more challenging because of the extra bookkeeping involved
and the need to understand how to move a point along a curve.

2.4. Assignment 4: Tessellation

This assignment introduced the concept of particle systems and
their application to creating irregular tessellations/mosaics as de-
scribed in [LM11]. On its own it might have taken an extra week
to cover the algorithm, but some components were built in Assign-
ments 2 and 3. This was a nice example of connections across pa-
pers and a demonstration of how research builds on previous work.

The goal of this assignment was to subdivide an image into ir-
regular patches, while retaining global information and coherence,
so that the result conveys the impression of floor mosaic or stained-
glass window. The method works by placing particles on the image
that then follow a vector field and trace curves in the output image.
A particle stops when it reaches another curve or the boundary.
Assuming that the vector field captures features of the image, the
particles will trace contours that define regions associated with the
features. The regions are then filled with a color that is representa-
tive of the pixels in the region (e.g. average color; Figure 3).

proc Tessellation(inImg, outImg) :
particles = generateParticles()
Fx, Fy = computeETF (inImg)
for p in particles:
move p along the ETF
record path of p in outImg
//stop at boundary or another curve
for R in outImg regions:
color = averageColor (inImg, R)
0 fillRegion (outImg, R, color)

H O 0 J o U1 w N

Two questions remain: how to generate the vector field and how
to generate the initial locations for the particles. We have answered
the first question in Assignment 3 with the computation of ETF,
and in fact, this is the suggested method in [LM11]. For the sec-
ond question, the paper suggests using a regular grid of particles or
a method that generates points whose distribution captures salient
points in the image, and the latter was computed in Assignment 2.

This means that we already have the tools to complete Lines 1

and 2, and in fact, we also have Lines 3-6 (move particle along
field), which was a component of applyDoG in Assignment 3.
In both applications the point/particle moves forward and back-
ward along the field, but whereas in Assignment 3 the field was
followed for a fixed number of steps, here the motion continues
until a boundary or another curve is reached.

For more abstract effect [LM11] propose replacing the ETF with
Lorentz force in a magnetic field. The particle is modeled as having
charge ¢ and moving in a magnetic field B. The force acting on the
charged particle is F' = g¥ x B, where the magnetic field is arbitrar-
ily set to B = (0,0, —1) and g(z) = s % (500 —1)*8, i.e. the charge
varies at each time step ¢ (s is a parameter that controls the shape of
the curve). This was a nice illustration of drawing inspiration from
another discipline (physics) to model an artistic technique.

‘We mention briefly the implementation details of Lines 9 and 10.
Filling a region in a given color can be done with a simple recur-
sive algorithm that takes as parameters the output image, any pixel
in the region, and the color: do nothing if pixel is out of bounds or
already colored; otherwise, the pixel is set to the given color and the
process repeats recursively on its four neighbors. A separate proce-
dure loops through all pixels in the output image and invokes the
recursive algorithm on any non-colored pixels (initially the whole
image is white with black pixels along the particle curves). This
can be adapted for computing the average color in a region.

In terms of implementation, much of the work has been com-
pleted in Assignments 2 and 3, namely Lines 1-2. Nevertheless,
we gave the students precomputed matrices (saved as numpy ob-
jects) with initial particle placements and ETF in order to eliminate
unnecessary re-computation of the same information and to enable
progress in case of issues with the code in previous assignments.

2.5. Assignment 5: Voronoi Mosaics

Assignment 5 also looked at the process of generating mosaics, but
used a substantially different approach from that of Assignment 4.
It was based on the work in [Sec02] which actually introduces a
method for producing stippling effect, but we modified the algo-
rithm slightly to generate tilings that appear to be built out of regu-
lar hexagons. The input in our case is a color image, although much
of the processing takes place in its grayscale version.

This assignment introduced the concept of Voronoi Diagram
from Computational Geometry, a topic that our students usually
do not encounter in the curriculum. In 2D the Voronoi Diagram of
a set of n points/sites is a partitioning of the plane into n regions
such that region R; contains all points that are closest to site p;.
A Centroidal Voronoi Diagram (CVD) is a Voronoi Diagram such
that each site is also the center of mass of its corresponding region
given a density function p(x,y).

The main idea behind the algorithm in [Sec02] is to compute
a CVD for an initial set of randomly placed points inside the
grayscale version of the given color image. The density function is
p(i,j) = 1 —intensity(i, j) (i.e. Black pixels contribute 1 and White
contribute 0). There is an obvious connection with Assignment 2,
which also used the same density function for halftoning effect.

The CVD can be computed using an iterative process known

(© 2020 The Author(s)
Eurographics Proceedings (©) 2020 The Eurographics Association.

Ilinkin / A Course on NPAR 13

B2 125 0 (xy)dxdy

X = "
B2 (20 ply)dxdy

Figure 5: Assignment 6 results.

as Lloyd’s method [DFG99] which alternates between computing
a Voronoi Diagram for the current set of points and then mov-
ing/replacing the points with the centroids of their corresponding
regions. The process stops when a convergence criterion is met (for
example, average distance moved below a user-defined threshold).

proc VoronoiMosaic (inImg, outImg) :

1 points = generatePoints ()

2 while not converged:

3 CVD = computeVoronoi (points)

4 for R in regions (CVD) :

5 computeCentroid(inImg, R)
6 points = region centroids

7 for R in regions (CVD) :

8 color = averageColor (inImg, R)
9 fillRegion (outImg, R, color)

© 2020 The Author(s)
Eurographics Proceedings (©) 2020 The Eurographics Association.

The sites of the final CVD are used as stipple points, based on
the idea that "denser" regions will attract more sites. In our modi-
fication, we instead render the regions of the CVD overlaid on the
original color image. Each region is assigned the average color of
the enclosed pixels, which gives the mosaic effect (Figure 4).

The students were given a program for computing the Voronoi
Diagram in Line 3. The output of the program was a list of edges
along with information about the index/id of the region to the left
and right of each edge. The challenge for the students was to effi-
ciently process all regions and compute their centroids in Lines 4—
5. Figure 4[Left] shows the expression for computing the x coordi-
nate of a centroid, where the denominator is the region density and
the numerator is the moment about the y-axis. The students were
asked to implement a sweep-line algorithm that scans the image
one row at a time and at each step considers the intersected Voronoi
edges sorted by x coordinate (Figure 4[Left]). The pixel densities
along each scan segment are added to the current density total of

14 Ilinkin / A Course on NPAR

the corresponding region. The moment about the y-axis for each
region can be computed similarly along the way. When the sweep
line leaves the image, the x-coordinates of all centroids can be com-
puted. Similar discussion applies to the y coordinate. Finally, note
that Lines 7-9 are just Lines 8—10 in Assignment 4.

2.6. Assignment 6: Impressionist Effect

Assignment 6 revisited the concept of gradient and its applica-
tion to guiding brush strokes for impressionist effect as described
in [Lit97]. The main idea behind the algorithm is to draw short
linear strokes distributed randomly across the image using the gra-
dient to determine the direction of each stroke.

proc Impressionist (inImg, outImg) :

inImg’ = smoothImage (inImg, Gauss)
Gx, Gy, G = detectEdges(inImg’, Sx, Sy)
centers = generateGrid(inImg)

for ¢ in shuffle (centers):
pl, p2 = followGradient (Gx, Gy, c)
color = inImg|[c]
drawStroke (outImg, pl, p2, color)

~ oUW N

The algorithm begins in Lines 1 and 2 with an application of a
Sobel operator over a Gaussian filtered input image. Line 3 selects
stroke centers—the suggestion in [Lit97] is to place the stroke cen-
ters on a regular grid with a user-defined initial spacing (half stroke
width, for example); however, to prevent artifacts, the strokes are
rendered in random order by shuffling the generating centers. Fi-
nally, the strokes are rendered in Lines 4—7: First the endpoints
(pl, p2) of a stroke are found by following perpendicular to the
gradient for user-defined half stroke length in both directions start-
ing at the stroke center, p = c, as discussed in Assignment 3 and
Figure 2 (Left). Next, the endpoints (p1, p2) are connected with an
antialiased line of user-defined width (plus a small random pertur-
bation) in the color of the generating center in the original image.

The students noted the connection with Assignment 3 (curve fol-
lowing) and Assignment 1 (image smoothing and edge detection for
clipping strokes against identifiable objects in the image). We also
had an opportunity to discuss the concept of antialiasing; however,
in order to keep the focus on the rendering technique, in the imple-
mentation the antialiased stroke lines were render using PIL.

2.7. Assignment 7: Oil Painting Effect

Assignment 7 was based on the work described in [Her02]. The
goal was to produce a rendering of an image that conveys an oil
painting effect, and in particular, an impasto effect, which is char-
acterized by the layering of thick paint strokes that can produce
three dimensional relief texture over the surface of the painting.

The algorithm described in [Her02] can be used as a post-
processing step to any stroke-based technique. The main idea is
to create a height field by applying the strokes over the image
and accumulating paint over the areas/pixels covered by each
stroke. Viewed as a quadrilateral surface mesh over the pixel grid,

the height field can be used to compute surface normals at each
pixel/vertex from the normals of the incident quads. Finally, the ac-
tual color image produced by the original stroke-based technique
is rendered using bump-mapping with the Phong shading model,
which creates the appearance of relief texture over the image.

The application of the strokes in the construction of the height
field is guided by a height map, which controls the variation in
stroke thickness. The stroke is subdivided into a grid and wuv-
mapped to the height map to determine the height at each point,
which is then composited with the height field (Figure 7). An opac-
ity map can also be used as the strokes are applied and composited
for the final rendering.

The user can create several height/opacity map pairs and asso-
ciate them randomly with the strokes, although compelling results
can be produced with a single pair, which is the approach used
in [Her02] and the approach that we follow. The height and opacity
maps are simple to create—the ones shown in Figure 7 are created
by the author of [Her02] in a Paint program as random pattern.

proc OilPainting(inImg, strokes, maps) :

1 hField = makeMatrix(size (inImg)

2 for s in strokes:

3 hMap, oMap = randomEntry (maps)

4 for u,v in [0,1]x[0,1]:

5 p = slu, V]

6 h = htMap[u, V]

7 a = opMapl[u, V]

8 hField[p] = axhMap[u, v] +

9 (1-a) *hField[p]
10 normals = makeMatrix (size (inImg))

11 for r,c in size (hField) :

12 normals = norm (NI1+N2+N3+N4)

13 //use bump mapping and Phong model
14 //to render inImg with normals

Line 1 creates a scalar matrix that stores the height at each pixel.
Lines 2-3 process the strokes one at a time with randomly selected
height maplopacity map pair per stroke. Lines 4-9 apply the stroke
by defining a [0,1]x[0,1] (u,v) grid over the stroke and sampling at
user-defined steps the height value, 4, together with a compositing
factor, a, from the height map and opacity map, respectively, in a
process analogous to texture mapping. Line 10 creates a vector ma-
trix for the normals at each pixel/vertex and Lines 11-13 compute
each normal from the normals of the pixel’s/vertex’s four adjacent
quads in the height field surface mesh.

This assignment was a natural extension of Assignment 6. We
used the stroke sequences from Assignment 6 and rendered the
images again, but now they had relief textured appearance. This
was also an opportunity to discuss important concepts in computer
graphics, namely Phong illumination model, texture mapping, and
bump mapping. The students were particularly intrigued by the pos-
sibility to produce different visual effects simply by changing the
surface normals without altering the underlying geometry.

We also used this as an opportunity to give a high-level intro-

(© 2020 The Author(s)
Eurographics Proceedings (©) 2020 The Eurographics Association.

1linkin / A Course on NPAR 15

Figure 6: Assignment 7 results.

stroke E
) height map
v i f l

opacity map

Figure 7: Stroke and height/opacity maps correspondence.

duction to OpenGL. The students were given a simple renderer for
drawing a collection of points given the color and normal vector
at each point and we discussed the various steps in setting up the
renderer. Our goal was to offer only basic familiarity with the main
ideas—the students did not write OpenGL code, but simply wrote
to a file a sequence of point/color/normal specifications that were
read and displayed by the renderer.

2.8. Assignment 8: Pixel Art

Assignment 8 introduced a technique for generating reduced color
palettes in order to represent an image in the style of pixel
art [GDA*12]. In other words, the goal is to select a limited num-
ber of colors and assign them to the individual pixels to best convey
the original impression (Figure 8). The user specifies the number of
desired colors in the final palette and the dimensions of the output
image. The algorithm builds the palette in an iterative deterministic
annealing clustering process [Ros98]. The deterministic annealing
step is interleaved with refinement of superpixels [ASS*10], which
represent regions in the image of original pixels that are clustered
based on minimizing the following distance metric:

N
d(pi, ps) = de(pi, ps) +m\/;dP(Pi7PS))

where p; is a pixel in the image, ps is a superpixel, d. is the
Euclidean distance in LAB color space and d) is the Euclidean
distance in pixel coordinates, and m is a parameter; N and M
represent the total number of pixels in the output and input image,
respectively. In other words a superpixel represents a region in the
input image of pixels that are close in proximity and color. The
color of the superpixel is eventually assigned in the output image
to represent the whole region from the input.

(© 2020 The Author(s)
Eurographics Proceedings (©) 2020 The Eurographics Association.

proc PixelArt (inImg, outW, outH, K):

1 superpix = buildGrid(inImg, outW, outH)
2 palette = [meanColor (inImg)]

3 T = 1.1Tc

4 while T > Tf

5 refine (superpix)

6 associate (superpix, palette)

7 refine (palette)

8 if palette converged:

9 T = oT

10 expand (palette)

11 //build output image:
12 // assign to each output pixel palette
13 // color of corresponding superpixel

The algorithm from [GDA™ 12] takes as input the original image,
the dimensions of the output image, and the palette size for the
output image. In Line 1 the superpixels are selected as the centers
of a outW x outH grid over the input image, so that initially each
superpixel represents a rectangular region of pixels in the original
image. On each iteration this association is improved in Line 5 by
recomputing Equation 1 for each pixel against each superpixel.

The palette is initialized to a single color and all superpixels are
associated with that color. The ultimate goal is to split the superpix-
els int K clusters, which is achieved through the annealing process,
which essentially performs k-clustering. During the annealing pro-
cess the clusters split along the principal directions generating new
colors in the palette; the details are described in [Ros98].

This assignment required reading 3 different papers and took a
bit longer to complete, but overall the implementation was feasible.

3. Discussion

This paper introduced a design for a course in Non-Photorealistic
Rendering. The course is built around a selection of research papers
that cover a wide range of techniques and are feasible to implement
in one to two weeks at the junior/senior undergraduate level. In ad-
dition, there were strong connections between some of the papers,
which helped integrate the material and gave it a cohesive flow.

In addition to introducing the students to the exciting field of
NPAR the course also aimed to develop skills in reading published

16 1linkin / A Course on NPAR

Addd

Figure 8: Assignment 8 results—original image 54x80 / 4x6,4 colors / 11x16, 6 colors / 22x32, 8 colors.

research and strengthen programming skills. The course feedback
suggests that these goals were largely met. The students described
the course as hard but fun and noted as positive aspects:

learned how to take a scientific paper and implement it myself

ability to read, understand and implement journal articles

debugging ability, patience

feel very confident in Python now and scientific papers seem

much more feasible now

e skill to read paper and grab important information from paper

e time management, debugging skills; learning how to write clean
code help

e combined knowledge from other areas (physics, math, etc)

e presentation skills

This was the first offering of the course, so there were challenges
along the way. In particular, the students expressed frustration with
the difficulty of debugging, which unfortunately is a challenge in
any computer graphics project. The fact that several students shared
that they developed debugging skills hopefully suggests that the
difficulty leveled off as the course progressed. Whenever possible
we offered precomputed data from a previous assignment to reduce
idle time and ensure progress if there were problems with previous
code. Finally, there were occasionally times of delay when a partic-
ular step in an algorithm was unclear and adjustments were made
in the course schedule to account for this. Fortunately, this did not
happen often and the students showed understanding. A future of-
fering will benefit from the experience gained this semester.

In the future, we would like to explore the possibility of includ-
ing a paper on ASCII-Art. One of the papers in the course was on
image inpainting (not discussed here), so this could be replaced if
a feasible ASCII-Art option is found (one candidate is [And17]).

References

[ABCC] APPLEGATE D., BixBY R., CHVA-
TAL V., COoOK W.: Concorde TSP Solver.
http://www.math.uwaterloo.ca/tsp/concorde/. 3

[Ahm14] AHMED A.: Modular Line-based Halftoning via Recursive Di-
vision. In Proceedings of the Workshop on Non-Photorealistic Animation
and Rendering (New York, NY, USA, 2014), NPAR ’14, ACM, pp. 41—
48. doi1:10.1145/2630397.2630403. 2

[And17] ANDERSON E.: Generating ASCII-Art: A Nifty Assignment
from a Computer Graphics Programming Course. In EG 2017 - Ed-
ucation Papers (2017), Bourdin J.-J., A. S., (Eds.), The Eurographics
Association. doi:10.2312/eged.20171021. 1,8

[ASS*10] ACHANTA R., SHAJI A., SMITH K., LuccHI A., FuA P.,
SUSSTRUNK S.: SLIC Superpixels. Tech. rep., EPFL Technical Report
149300, June 2010. 7

[DFG99] Du Q., FABER V., GUNZBURGER M.: Centroidal voronoi tes-
sellations: Applications and algorithms. SIAM Rev. 41, 4 (Dec. 1999),
637-676. do1:10.1137/50036144599352836. 5

[GDA*12] GERSTNER T., DECARLO D., ALEXA M., FINKEL-
STEIN A., GINGOLD Y., NEALEN A.: Pixelated Image Abstrac-

tion. In Proceedings of the Symposium on Non-Photorealistic
Animation and Rendering (Goslar Germany, Germany, 2012),
NPAR 12, Eurographics Association, pp. 29-36. URL:

http://dl.acm.org/citation.cfm?i1d=2330147.2330154.
7

[Her02] HERTZMANN A.: Fast Paint Texture. In Proceedings of the
2Nd International Symposium on Non-photorealistic Animation and
Rendering (New York, NY, USA, 2002), NPAR ’02, ACM, pp. 91-ff.
doi:10.1145/508530.508546. 6

[KLCO7] KANG H., LEE S., CHUI C.: Coherent Line Drawing. In Pro-
ceedings of the 5th International Symposium on Non-photorealistic An-
imation and Rendering (New York, NY, USA, 2007), NPAR ’07, ACM,
pp.- 43-50. doi:10.1145/1274871.1274878.3

[KNSMO07] KoNDO K., NISHITA T., SATO H., MATSUDA K.: An Edu-
cational Non-Photorealistic Rendering System Using 2D Images by Java
Programming. Journal for Geometry and Graphics 11, 2 (Jan 2007),
237-247. 1

[Lit97] LITWINOWICZ P.: Processing Images and Video for an Impres-
sionist Effect. In Proceedings of the 24th Annual Conference on Com-
puter Graphics and Interactive Techniques (New York, NY, USA, 1997),
SIGGRAPH ’97, ACM Press/Addison-Wesley Publishing Co., pp. 407—
414. doi:10.1145/258734.258893. 6

[LM11] L1 H., MouLD D.: Artistic Tessellations by Growing
Curves. In Proceedings of the ACM SIGGRAPH/Eurographics
Symposium on Non-Photorealistic ~ Animation —and Rendering
(New York, NY, USA, 2011), NPAR 11, ACM, pp. 125-134.
doi:10.1145/2024676.2024697. 4

[Mur04] MURMAN C.: Teaching Tool to Demonstrate Techniques Used
in Non-Photorealistic Rendering, 2003-2004. BSc Thesis. 1

[Ros98] ROSE J.: Deterministic annealing for clustering, com-
pression, classification, regression, and related optimization prob-
lems. Proceedings of the IEEE 86, 11 (Nov 1998), 2210-2239.
doi:10.1109/5.726788.7

[Sec02] SECORD A.: Weighted Voronoi Stippling. In Proceedings of
the 2nd International Symposium on Non-photorealistic Animation and
Rendering (New York, NY, USA, 2002), NPAR *02, ACM, pp. 37-43.
doi:10.1145/508530.508537. 4

[SS00] STROTHOTTE T., SCHLECHTWEG S.: Teaching Non-
photorealistic Animation and Rendering (Panel Session). In Proceed-
ings of the 1st International Symposium on Non-photorealistic Animation
and Rendering (New York, NY, USA, 2000), NPAR *00, ACM, p. 109.
doi:10.1145/340916.340932. 1

[TPD*18] TRAPP M., PASEWALDT S., DURSCHMID T., SEMMO A.,
DO J.: Teaching Image-Processing Programming for Mobile Devices:
A Software Development Perspective. In EG 2018 - Education Pa-
pers (2018), Post F., Z4ra J., (Eds.), The Eurographics Association.
doi:10.2312/eged.20181002. 1

(© 2020 The Author(s)
Eurographics Proceedings (©) 2020 The Eurographics Association.

http://www.math.uwaterloo.ca/tsp/concorde/
https://doi.org/10.1145/2630397.2630403
https://doi.org/10.2312/eged.20171021
https://doi.org/10.1137/S0036144599352836
http://dl.acm.org/citation.cfm?id=2330147.2330154
https://doi.org/10.1145/508530.508546
https://doi.org/10.1145/1274871.1274878
https://doi.org/10.1145/258734.258893
https://doi.org/10.1145/2024676.2024697
https://doi.org/10.1109/5.726788
https://doi.org/10.1145/508530.508537
https://doi.org/10.1145/340916.340932
https://doi.org/10.2312/eged.20181002

