EUROGRAPHICS 2019/ E. Galin and M. Tarini

Education Paper

Do contests improve students skills in Computer Graphics?
The case of API8

J.-P. Palus' and F. Belhadj1

and J.-J. Bourdin!®1

ILIASD, Université Paris 8, Saint-Denis, France

Abstract

This paper presents a contest designed to improve the skills of students in Computer Graphics. The contest is adapted to the
current skills of the students and uses a public graphic library. Students then have to produce a demo, generally a program
which presents an animation. The main result presented in this paper is that with an appropriate set of tools, students program
interesting demos to participate in the contest and their skills in Computer Graphics seem to improve significantly.

CCS Concepts

e Social and professional topics — Computer science education; Student assessment; e Computing methodologies —

Animation; Rasterization;

1. Introduction

Since the late 90s the teaching of Computer Graphics (CG) has
drastically evolved. OpenGL changed a lot from version 1 to 2 and
the deprecations enforced in the core profile of version 3.3 led to a
greater complexity of use without a solid background. The assess-
ment of a program is difficult. If for instance the parameters of the
view point are wrong and the image does not show the scene, is
the program a complete failure? As other authors have noticed, see
for example the introduction of [BSP17], teaching OpenGL is in-
creasingly difficult. The consequence is that libraries and tools are
created to help students develop only the critical material. Teachers
then have to avoid two main problems: presenting tools with the
risk of students avoiding programming or teaching CG program-
ming with the risk of a higher rate of failure and a subsequent de-
crease in enrollments. In our university we faced this dilemma and
tried to solve it by launching a contest in Computer Graphics spe-
cially designed for our sophomore students. This was based on the
idea of activity-led instruction [AP09]. While studies exist on the
use of Robocup or other contests as teaching tools [AV02, SPS04]
or even on assessment in programming [[AKS10,LDUC13], we did
not find such work on CG. This paper will present the choices we
made and Figures 3, 4 and 5 present some results of this experi-
ment. The making of these images is presented in section 5.2.

T Treasurer of EUROGRAPHICS

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

DOI: 10.2312/eged.20191028

2. Context

We needed to adapt the contest to our student audience. In our uni-
versity students learn programming as freshmen (120h courses +
80h lab.) and carry on for their second year (same total). The other
courses present machine architecture, basic courses in Logic, Al,
Data Structures and Algorithmic. Most of these courses use pro-
gramming as a way to learn. Students mostly program in C. We had
no other choice than to respect this background as it makes cross-
platform programming or implementing easy. We also wanted to
use a suitable library because we did not want students to have to
develop everything by themselves. We used GLU/GLUT [fre19],
for years, but the current version is no longer functional with the
core profile of OpenGL 3.3+.

Using GLEW [Glel19] or GLFW [GIf19] seemed possible
but these libraries are now deprecated, not maintained or lacking
easy-to-use functionalities. More complete libraries were available:

e glGA [PPGT14] is a geometric application framework. It runs
on different platforms (Windows, Linux, MacOS) but is based
on C++.

e Libraries like ShaderLabFramework [TRKI17] or bRen-
derer [BSP17] may be even better but are also based on
CH+.

e GL4D [GL419] is, to our knowledge the only multi-platform
framework based on C providing easily accessible features un-
der the OpenGL 3.3 core profile. It may be seen as an extension
of SDL2 [SDL19]: from rasterization based on OpenGL textures
to higher level functions in 3D. For example, it is interesting to
make students implement straight line algorithms such as Bre-

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

https://orcid.org/1234-5678-9012
https://orcid.org/0000-0003-3461-4820
https://doi.org/10.2312/eged.20191028

46 Palus & Belhadj & Bourdin / API8

senham’s [Bre65] or Boyer’s [BB99] but also a morphing or a
polygon shading. We chose this framework in 2010 and were
able to contribute to it. It is then the base of our contest and of
our CG courses.

2.1. Technical context related to the selected library

Choosing GL4D allows for a progressive transition to the
OpenGL’s core profile. Moreover, it provides simple tools to create
demos as multiple OpenGL sub-programs drawing on the frame-
buffer in a transparent way.

Here, we summarize in a few points some of the features of-
fered by this library to highlight how the transition was made, from
teaching OpenGL 2 to 3.3 and more:

e The ability to create (on the CPU side), name (on the CPU side)
and target (in shader code) matrices having the same functional-
ities as the matrices managed in the first versions of OpenGL:

— glMatrixMode(...) becomes
gl4duBindMatrix (...);

— functions like gl<Load~*, Translate?, Rotate?...>
become gl4du<Load«*, Translate?, Rotate?...>;

— an automatic matrix stack management is accessible via
gl4duPushMatrix and gl4duPopMatrix.

e The ability to create, through a single call, program shaders from
files and/or strings. When shaders come from files, the library
allows to dynamically update them.

e In the same way as GLUT, one can simply create and man-
age (gl4duGenx/gl4dgDraw) basic geometries such as: a
quadrilateral, a sphere, a grid or a torus.

e The ability to apply screen/texture to screen/texture filters, such
as: blur, sobel, median and operations.

e It is possible to associate “screens” and OpenGL textures to
use basic 2D primitives such as putpixel, getpixel and
drawline, with a total or a partial CPU/GPU synchronization.

e The ability to describe a timeline that synchronizes and plays
OpenGL animation sequences (with asynchronous sound man-
agement and sound-image interaction) and makes transitions be-
tween sequences where the programmer mixes two textures at a
time 7 € [0, 1].

3. Computer Graphics Courses

In this section we present the first CG course of our curriculum
and then summarize our other CG courses. Note that the course
evaluation is still based on technical aspects, although the contest
is a perspective for motivating our students, even these who do not
participate.

3.1. The first CG course

The main goal of our first course is to present the field and to lead
the students to program images and animations. The course starts
with an introduction to the memory representation of an image and
more specifically of a pixel. The implementation is focused on cod-
ing RGBA pixels using an unsigned 32-bit integer. Pixels are ac-
cessed via a 1D-indexed array. Shifts and binary masks are shown

and used for reading and writing the color components. This intro-
duction brings us to the sub-library of GL4D with 2D primitives
and management of multiple screens based on the same image
representation. The screens and the window can have different
resolutions and linear or by-nearest-neighbor interpolations are pre-
sented.

After that, a simplified view of the GPU pipeline and the basics of
data transfers between the CPU and the GPU are presented. The
screens are textures on the OpenGL 3.3+ side and a default
shader allows to map them on predefined 3D geometries (quad,
sphere, cube, torus, ...). Initially, only quads are used to map
screens to the viewport.

Starting with putpixel and getpixel routines, the lines
and circles are revisited through re-implementations of Bresen-
ham’s 1965 [Bre65] and Bresenham’s 1977 [Bre77] algorithms
(one optional course goes further [BB99], especially concerning
the DDA). Scan-line polygon filling is addressed and, in some
years, the course extends to color gradient and texture mapping
through a CPU implementation from-scratch.

As an application of the Bresenham’s 77 algorithm, we usually
propose to realize a discrete implementation of Voronoi diagram
using growing circles (modifying primitives to manage conditional
filling, addressing the moiré effect problem and using an image as a
source of sites color). Figure 1 shows some results obtained after 4
or 5 course sessions, each session being 2 hours long.

In this context, our students discover for the first time what a
program shader can be. We focus on a simple fragment shader
using 2D-unitary texture coordinates and data of uniform type.
Thus, when applying a quad covering the viewport, a fragment is
produced for each screen pixel. A computation of the Voronoi di-
agram by running through all the sites and choosing the color of
the nearest one is given. Table 1 shows an implementation where
diagram sites are sent as a 1D texture. Figure 2 presents the result-
ing Voronoi diagram for this GPU implementation. The top image
matches the source code given in table 1, the other two use the dis-
tance to the second nearest site in order to shade the rendering.

The course continues with an introduction to animation based
on examples using simplified models of Newtonian physics includ-
ing collisions. We emphasize the importance of the elapsed time
in the movement computations between two frames. Audio man-
agement is presented up to an introduction to spectral analysis and
image/audio interaction. After that, we introduce the GL4D Demo—
Helper module, briefly detailed in the next paragraph, that allows
managing multiple animations and transitions between them. The
course usually concludes with a few introductory sessions to 3D:
the use of GL4D solids and 3D matrices (view, model and projec-
tion).

T It would be interesting to present an implementation that sends triangu-
lated cones centered on the sites coordinates and puts into practice the z-test.
However, at this stage, students knowledge in 3D modeling (including ver-
tex arrays), transformations (scale, translations and projection) and OpenGL
(including options and buffers) is insufficient to deal with this variant with
serenity.

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

Palus & Belhadj & Bourdin / API8 47

#version 330

uniform samplerlD sites;

uniform float step;

in wvec2 vsoTexCoord;

out vec4 fragColor;

vecd voronoi (vec2 xy) {
float i, minidx = 0.0, d;
float mindist;

for(i = 2.0 » step; 1 < 1.0; 1 += 2.0 % step) {
vec?2 position = texture(sites, i + step) .xy;

if (mindist > (d = length(xy - position.xy))) {
mindist = d;
minidx = 1i;

}
return texture (sites, min_idx);
}
void main (void) {
fragColor = voronoi (vsoTexCoord) ;

}

mindist=length (xy-texture (sites,minidx+step) .xy);

Table 1: A GPU Voronoi diagram as an introduction to fragment
shaders.

Figure 1: CPU implementation of the Voronoi diagram. The im-
age at the bottom was realized by a sophomore student. Colors are
selected on a photography as sites colors to initialize the diagram
(zoom in on the image to see the detail). At each frame, depending
on the sites placement, the effect can be more or less interesting.

(© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

Figure 2: GPU implementation of the Voronoi diagram.

Figure 3: Examples of images extracted from demos.

48 Palus & Belhadj & Bourdin / API8

= i

Figure 4: Examples of achievements made by more advanced stu-
dents.

3.2. The DemoHelper module

To be able to program a proper animation, students need to get
higher level functions. We propose the use of the GL4D Demo—
Helper module, a set of functions to build independent sequences
with their own data sets including sound and a transition functions
between sequences without a break.

The structure proposed in Table 2 is used to describe an
animation or a transition. Each one starts at a given time and has 4
states allowing initialization, updating data according to the sound,
drawing or releasing data before leaving. A transition plays two
animations by gradually mixing them with the elapsed time to go
from one to the other.

Table 3 shows how to realize an animation based on 2D primi-
tives which can adapt to the sound. The use of static variables gives
the ability to leave the animation data accessible from one frame
to the other but also from one state to another. It should be noted
that the state GLADH_UPDATE_WITH_AUDIO is produced by a
callback. This callback is generated by the process managing the
audio that is different from the main process (the one creating the
OpenGL context). Thus, the audio process can compute a radius
that will be applied to the disc at the drawing time (ie, during an-

Figure 5: This work, done by one of our students, illustrates the use
of linear filters implemented in GPU to have a real-time processing
over the framebuffer’s output in order to obtain artistic renderings.

enum GL4DHstate {
GL4DH_INIT,
GL4DH_UPDATE_WITH_AUDIO,
GL4DH_DRAW,
GL4DH_FREE
bi
struct GL4DHanime ({
Uint32 time;
void (x first) (int state);
void (% last) (int state);
void (% transition) (void (* animO) (int),
void (* animl) (int),
Uint32 fullTime,
Uint32 elapsedTime,
int state);

Table 2: The DemoHelper main structure.

other call). On this basis, we explain to students how to modify
their graphics programs in order to integrate them according to this
model.

3.3. The other CG courses

Furthermore, the other CG courses also use basic or advanced func-
tionalities of GL4D:

e Image Synthesis, for junior students: it is a theoretical and prac-
tical approach to DDA, to image processing and to expressive
rendering of an image (hatching, painting...).

e Basic GPU programming, for junior students: it is the first full
course on the new OpenGL/GLSL architecture (GL primitives,
vertex arrays, texturing, lighting, geometric distortions. . . are de-
tailed).

e Advanced GPU programming and computer vision (using
OpenCV [OPE19]), for master students: here, data generation,

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

Palus & Belhadj & Bourdin / APIS 49

void audio_disk_anim(int state) {

Sintl6 % stream;

GLint acc, length, 1i;

static GLuint screen_id, radius;

switch (state) {

case GL4DH_INIT:
screen_id = gld4dpInitScreen();
gl4dpUpdateScreen (NULL) ;
return;

case GL4DH_FREE:
gl4dpSetScreen (screen_id) ;
gl4dpDeleteScreen() ;

return;
case GL4DH_UPDATE_WITH_AUDIO:
stream = (Sintl6 =*)ahGetAudioStream();

length = ahGetAudioStreamLength() » 1;
for(i = 0, acc = 0; i < length; i++)

acc += abs(stream[i]) » 4;
radius = 100 + acc / length;
return;

default:

gl4dpSetScreen (screen_id) ;

gl4dpClearScreen() ;

gl4dpSetColor (RGB (255, 255, 255));

gl4dpFilledCircle (gl4dpGetWidth() » 1,
gl4dpGetHeight () » 1,
radius) ;

gl4dpUpdateScreen (NULL) ;

return;

}

Table 3: Example of an animation that modulates a disc radius
according to the audio stream.

advanced modelling, rendering techniques and image processing
are addressed.

4. The contest

The API8 [API19] contest was launched in June 2014 with late and
little communication support. Since then, the contest has always
taken place between one and two months after the end of the 2nd
semester.

Now students start to work on the contest before the end of the
semester and therefore their work for the contest is presented as
their main result for the Computer Graphics course. The assess-
ment process is fulfilled by a program committee. In 2014, the
program committee was composed by an equal mix of CG teach-
ers, computer science teachers and academic staff. The following
year, it was fully composed of children. Since 2016, half of the pro-
gram committee is composed by teachers and the other half is com-
posed by externals particpants and non academic staff and children.
Therefore, aspects such as technical, storyline and visual aesthetic
are balanced. The contest is funded by our university and local au-
thorities and valuable prizes are given to the best three works. As a
lively performance each work is to be compiled and executed on a
Linux system proposed by the organizers.

Moreover, since the second edition, other computer science

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

2014 | 2015 | 2016 | 2017 | 2018
Sophomores 50 71 57 69 60
No work given 17 34 20 29 27
Unsatisfactory marks 16 13 6 3 9
Satisfactory marks 17 24 31 37 24
Contestants 12 10 6 15 14

Table 4: Quantified results per recent years

fields have joined the contest including an “Al Chatterbot™ track
(since 2015) and an “Al for StarCraft2” track (since 2017).

5. Results
5.1. Quantified results

Table 4 presents some quantified results for the CG course of our
curriculum. In 2014 this course took place during the third year
and since 2015 during the second year of our bachelors degree. We
do not present results from earlier years. The first two years, 2014
and 2015, students did not associate the contest with the course and
thought they were expected to work on two different projects. We
choose to simplify the table with only two categories (Unsatisfac-
tory or Satisfactory work), the number of very good marks should
have a meaning too. The last row is the number of contestants but
a few of them come from other universities.

Our average cohort is around 60 sophomores. One must note
that if a student missed one or more courses during the second year
this student is counted as both a sophomore and a junior. Therefore
some students that gave no work have passed on previous years.
Some other students have failed the first semester: they are nonethe-
less registred for second semester courses they will not attend. The
last limit of our numbers is that this course is not mandatory. From
the management point of view it is easier to enroll students in each
course they may or may not choose. Therefore the “No work given”
values do not directly reflect a failure from students in the course.

To decipher the discrepancy between the number of students reg-
istered in this course and the number of works received we asked
other colleagues about their numbers. For one mandatory second
semester course, the number of registred students has been 73.
34 students presented their work and 8 students attended the class
but did not present their work. Other results are similar. We still
have no way of knowing how many of the registred students in-
tended to work for the course.

A surprising result of the contest is that a lot of students pre-
pare the contest, present they work as their assessment but don’t
present it in the contest. As one can see, the number of Satisfactory
marks greatly increases as students work for the contest. Having
more than 30 successes is an improvement over the previous years.
In itself such a result is a sufficient argument to implement a con-
test in CG if one’s pass rates are too low. But the main result is the
drop of unsatisfactory works.

Remark: Year 2018 is an exception since the university was
on strike and therefore closed to both students and staff for seven
weeks during the second semester. It is very difficult to come back

50 Palus & Belhadj & Bourdin / API8

to work after almost a two months long break. We were surprised
to see more than half of the sophomores coming back to follow the
course. Because of this situation we think the results for 2018 are
not comparable to the results of previous years we included them
anyway.

Table 5 presents the pedagogic summarized data.

Summary API8 is a contest to motivate students for
their first CG course. They learn to program
a demo

Learning Program a demo. Combine sound with anima-

QOutcomes tion

Classification(s) | Social and professional topics -> Computer
science education; Student assessment; Com-
puting methodologies -> Animation; Rasteri-
zation;

Audience Second year students, sophomores.

Dependencies Skills in C programming are mandatory, al-
gorithmics and data structures may come in
handy.

Prerequisites First main assignment in Computer Graphics.

Strengths To be able to present a whole project includ-
ing images, animations and sound. The com-
petition.

Weaknesses Its time consuming counterpart.

Variants The main scenario of the animation is their
own. The teacher may be more or less helpful
depending on the level of students enrolled.

Assessment Visual aesthetics; quality of the animation;
story told if any.

Table 5: CGEMS Metadata for APIS.

5.2. More results

We present in Figure 3 some images as examples of achievements
made by our undergraduate students and presented during previous
sessions of the contest. These demos backed up and extended con-
cepts seen during computer graphics courses. The first two lines
show works exploiting models loading with or without textures,
Gouraud or Phong lighting and the use of particle systems on the
CPU side. The third line shows an embodiment highlighting the
use of textures and transparency to obtain light and atmosphere ef-
fects. The following line shows extensive uses of the transformation
matrices and the matrix stack proposed in GL4D. The last one il-
lustrates transitions writing (the demoHelper module of GL4D ex-
ploits the framebuffer to play two animations simultaneously and
to help mix them) and the use of the geometry shader in mesh de-
formations according to the sound (also with the help of the demo-
Helper module).

Figure 4 presents examples of achievements made by our un-
dergraduate students and one masters student (a former undergrad-
uate). Here, students have proposed and independently explored
techniques not seen in class. The top line shows an example of
work presented at the 64k track where we can see a procedural
generation of sea, another of flames (both in GPU) and an engine

for L-Systems generation. The following lines show very complete
achievements including volumetric fog and lightings, GPU particle
systems for flame generation, environment mapping, steep parallax
mapping and more complex lighting models including the bloom
lighting.

5.3. Stunning results

We are mostly interested in numbers, but subjective evaluations
may be meaningful. The first remark is that the contest takes place,
each year, after the end of the semester in order not to penalize the
other courses.

We have been surprised to notice that students are still working
on CG after the end of the semester. The main result for us, as
teachers, is the number of domains that were never approached by
our students, even the very best of them, that are now treated and
added to their work:

Animations.

Realistic movement of joints.

Camera movements.

Artistic view of their work. How many times did you receive
images no better than what children give to their parents? Now
we receive works with a real artistic content.

e Coordination of the sound and movements in the image. It in-
duces students to work more on the image.

Therefore, the results to the Computer Graphics course are better
now.

5.4. Students’ point of view

Some of our students are largely below average students. One failed
to the Algorithmic course twice. After being involved in the con-
test, this student started to work better and succeeded in Algorith-
mic during the following semester. Another one had real difficulties
with programming. His first participation in the contest was marked
by an average but well scripted demonstration that produced sev-
eral “segmentation fault” which became his nickname. This expe-
rience changed this student into a valuable one who is currently
working as programmer in a well known Computer Graphics com-
pany. Other students were on the top side and their results were not
as surprising. But it is always a pleasure when sophomores come
with a 3D shader based demo one year before the extended course
on GPU programming, or implement an augmented reality system
with a virtual face that synthesizes an AIML-bot speaking in a real
scene.

Most of our students present their demo when they apply for
internships or for a job. They all say it was a major asset to be
accepted. Some of them got internships and then jobs in CG or
video games companies.

6. Conclusion

For us the main contribution of this experiment is to encourage
staff to develop their own contest or to encourage their students
to participate ours. In any case it seems that the contest increases
student motivation in our Computer Graphics courses.

(© 2019 The Author(s)
Eurographics Proceedings (© 2019 The Eurographics Association.

Palus & Belhadj & Bourdin / APIS

Acknowledgments

The contest was funded by Université Paris § — UFR MITSIC
and we would specially like to thank Plaine Commune, audio-3D,
Grafeet and MFA for funding this contest and the students that par-
ticipate to our courses and/or the contest.

References

[AP09] ANDERSON E. F., PETERS C. E.: On the Provision of a Com-
prehensive Computer Graphics Education in the Context of Computer
Games: An Activity-Led Instruction Approach. In Eurographics 2009 -
Education Papers (2009), Domik G., Scateni R., (Eds.), The Eurograph-
ics Association. 1

[API19] Api8, 03 2019. Accessed 03.03.2019. URL:
http://www.api8.fr.5

[AV02] AHLGREN D., VERNER I.: An international view of robotics
as an educational medium. In International Conference on Engineering
Education (August 2002). Manchester. 1

[BB99] BOYER V., BOURDIN J.-J.: Fast lines: A span by span method.
Comput. Graph. Forum 18,3 (1999), 377-384. 2

[Bre65] BRESENHAM J.: Algorithm for computer control of a digital
plotter. IBM Systems Journal 4, 1 (1965), 25-30. 2

[Bre77] BRESENHAM J.: A linear algorithm for incremental digital dis-
play of circular arcs. Commun. ACM 20, 2 (1977), 100-106. 2

[BSP17] BURGISSER B., STEINER D., PAJAROLA R.: bRenderer: A
Flexible Basis for a Modern Computer Graphics Curriculum. In EG
2017 - Education Papers (2017), Bourdin J.-J., Shesh A., (Eds.), The
Eurographics Association. 1

[fre19] Freeglut, 03 2019. Accessed 03.03.2019. URL:
http://freeglut.sourceforge.net/. 1

[GL419] Gl4d, 03 2019. Accessed 03.03.2019. URL:
https://github.com/noalien/GL4Dummies. 1

[Gle19] Glew, 03 2019. Accessed 03.03.2019. URL:
http://glew.sourceforge.net/. 1

[GIf19] Glfw, 03 2019. Accessed 03.03.2019. URL:

https://www.glfw.org. 1

[TAKS10] IHANTOLA P., AHONIEMI T., KARAVIRTA V., SEPPALA O.:
Review of recent systems for automatic assessment of programming as-
signments. In Proceedings of the 10th Koli Calling International Con-
ference on Computing Education Research (New York, NY, USA, 2010),
Koli Calling "10, ACM, pp. 86-93. 1

[LDUC13] Li1C.,DONGZ., UNTCH R., CHASTEEN M.: Engaging com-
puter science students through gamification in an online social network
based collaborative learning environment. In International Journal of
Information and Education Technology (01 2013), vol. 3, pp. 72-77. 1

[OPE19] Opencv, 03 2019. Accessed 03.03.2019. URL:
https://www.opencv.org. 4

[PPGT14] PAPAGIANNAKIS G., PAPANIKOLAOU P., GREASSIDOU E.,
TRAHANIAS P.: glGA: an OpenGL Geometric Application Framework
for a Modern, Shader-based Computer Graphics Curriculum. In Euro-
graphics 2014 - Education Papers (2014), Bourdin J.-J., Jorge J., Ander-
son E., (Eds.), The Eurographics Association. 1

[SDL19] SdI2, 03 2019. Accessed 03.03.2019. URL:
https://www.libsdl.org. 1

[SPS04] SKLAR E., PARSONS S., STONE P.: Using robocup in
university-level computer science education. J. Educ. Resour. Comput.
4,2 (June 2004). 1

[TRK17] ToOISOUL A., RUECKERT D., KAINZ B.: Accessible GLSL
Shader Programming. In EG 2017 - Education Papers (2017), Bourdin
J.-J., Shesh A., (Eds.), The Eurographics Association. 1

© 2019 The Author(s)
Eurographics Proceedings (©) 2019 The Eurographics Association.

51

http://www.api8.fr
http://freeglut.sourceforge.net/
https://github.com/noalien/GL4Dummies
http://glew.sourceforge.net/
https://www.glfw.org
https://www.opencv.org
https://www.libsdl.org

