
Mapping Creative Coding Courses: Toward Bespoke
Programming Curricula in Graphic Design Education

S. M. Hansen
Department of Digital Design and Information Studies, Aarhus University, Denmark

Abstract
This paper presents a study of 30 syllabi gathered from introductory Creative Coding programming courses. A selection of
the results concerning the courses' structure and content is presented and discussed. The majority of the analyzed courses
exhibited evidence of being planned to adapt and submit graphic design topics to programming paradigms. Also, topics and
algorithms of particular value to graphic design as a spatial practice were absent in many courses. Finally, most courses
did not investigate visual output that is achievable only through computation. The present study argues that educators must
adapt their Creative Coding syllabi and teaching materials to make programming meet the needs of graphic designers rather
than the other way around. The findings in this paper provide a point of departure for a critical discussion among educators
who wish to integrate programming in graphic design education.

1. Introduction

In the wake of the convergence of computer programming and
graphic design, several scholars and practitioners have argued that
there is a need for coding to play a larger role in the future
education of graphic designers [Ami11; Pet12; Sau13; Tob12a;
You01]. This move toward integrating computation into graphic
design practice and education is paramount to engage and nurture
a new generation of cross-disciplinary meta-designers who are as
visually talented as they are technically proficient [Mad15].

Extending this discussion into classroom practice, design
schools across the globe have begun revising their curricula to
include courses in Creative Coding, which is a vague yet
popularized term describing "a discovery-based process consisting
of exploration, iteration, and reflection, using code as a primary
medium, towards a media artifact designed for an artistic context"
[MB13]. However, as an emerging practice, educators and
researchers alike still only possess a shallow understanding of how
programming should ideally be taught to an audience of
visuospatial-inclined graphic designers. The lack of an established
epistemological framework [TF17] inadvertently has caused many
Creative Coding courses to be haphazardly planned on an
uninformed basis. In an effort to mitigate this, design educators
have drawn inspiration from programming courses offered within
Computer Science, but, without proper adaptation, they
unintentionally have made graphic design topics fit the structure
and terminology of Computer Science.

Moving toward bespoke programming curricula that is adapted
to fit graphic designers calls for investigation into and discussion
of how these courses should ideally be planned, developed, and
implemented. To facilitate an informed debate on the subject, an
overview of the status quo of contemporary Creative Coding
courses is needed. Examination of the literature reveals that no
study to date has been conducted on this subject. Therefore, to fill
this gap, this paper asks the question: "How are introductory
Creative Coding courses that are designed to teach programming in
a visual context structured, and what topics are covered?" To

answer this question, the systematic mapping and content analysis
of 30 representative Creative Coding courses were performed.

2. Collecting data

The first phase of this study involved conducting structured
Internet search engine queries using combinations of chosen
keywords that are essential to the topic of the study (see Table 1).
The search was carried out using generic web search engines,
Google and Bing, with the browser set to “private mode” to prevent
the possible interference of past searches in the results. To prevent
a bias toward courses taught in English, queries using translations
of the keywords in several languages (i.e., German, Spanish,
Portuguese, French, Italian, Danish, Swedish) were also made.
Search results from the first five pages of each query were
systematically evaluated to construct a gross list of identified
courses. In the second phase, search queries using the previously
mentioned keywords were made on code sharing websites that are
frequently used by educators who teach programming in a visual
context: github.com, codepen.io, and openprocessing.org (Main
Repository & Class Section). All identified courses were added to
the gross list.

Next, the content of each of the courses on the gross list was
reviewed and measured against a set of criteria to determine if it
was suitable for inclusion in the study:

• Offered by a university, university college, or trade school
• Taught within the past five years (2013-2018)
• Introductory level
• Teaches programming in a visual design context
• Detailed course syllabus is available
• Teaching materials are available (optional)
• Assignments and student submissions are available (optional)

Applying this search strategy yielded 30 courses qualified for in-
depth analysis. The syllabus, teaching materials, and assignments
from each course were downloaded to form the study's dataset.

EUROGRAPHICS 2019/ E. Galin and M. Tarini Education Paper

©c 2019 The Author(s)
Eurographics Proceedings ©c 2019 The Eurographics Association.

https://diglib.eg.orghttps://www.eg.orgDOI: 10.2312/eged.20191024

https://doi.org/10.2312/eged.20191024

3. Analysis & Results

A homogenized dataset was developed using a spreadsheet to log
17 constituent parameters from each course (i.e., course duration,
class size, scheduled lectures, number of teaching assistants,
teaching methods, textbooks, programming environment). To
establish a framework for analyzing the courses' structures and
contents, an inductive textual analysis of the course syllabi and
teaching materials dataset was conducted to identify recurring
domain-specific topics relating to both Programming and Graphic
Design. Twenty-seven programming topics and 19 graphic design
topics were derived directly from the raw dataset through repeated
examination without the use of theoretical perspectives or
predetermined categories.

The identified domain-specific topics were used to construct a
matrix with 30 rows (courses) and 46 columns (topics). The matrix
was populated through a detailed examination of each course's
syllabus and teaching materials to identify in which class each topic
was first introduced and dealt with in-depth. The absolute class
number (e.g., 8) and its relative position in the overall course (e.g.,
the 8th class of 24 total classes = 33.3%) were entered into the
matrix. In cases where it could not be definitely decided if or when
a particular topic was dealt with in the course, the cell was left
blank. Color coding cells, using the relative position mapped to a
specter ranging from green (0%) over yellow (50%) to red (100%),
revealed the pattern shown in Figure 1. Green refers to “core”
topics introduced early in almost all courses, whereas, red refers to
advanced or specialized topics introduced late and sparsely across
the courses. Next, the average order in which both programming
topics and graphic design topics were taught was determined by
sorting the relative position value in ascending order. The tabulated
results are shown in Table 2. Below, a few of the most noticeable
results relevant within the scope of this paper are discussed.

Processing and p5.js were the preferred programming
environments. Of the analyzed courses, 37% used p5.js [MFR15],
33% used Processing [FR14], and 20% used both. Furthermore,
10% used lesser known JavaScript frameworks (basil.js, rune.js).
Other popular Creative Coding environments (e.g.,
openFrameworks, Cinder, vvvv, Max, three.js) were used only in
one of the analyzed courses, respectively; however, they often
replaced or supplemented Processing and p5.js in advanced
courses.

Debugging and error analysis techniques were only discussed
as separate topics in half of the courses. As a major part of
programming is hunting down bugs and fixing problems, failing to
equip students with techniques to accomplish this will likely cause
frustration among students who have to solve their assignments
outside of their scheduled classes and, thus, will not have the
opportunity to ask an instructor or teaching assistant for advice.

Recursion was introduced relatively late (64% into the courses),
considering its ability to produce visually aesthetic results. Of the
courses that introduced recursion, half of them discussed it solely
as an abstract concept while the remaining courses explained
recursion visually by implementing generic examples (e.g., Koch
snowflakes, recursive trees). Only one course exemplified how
recursion is used in actual graphic design artifacts.

Collisions, overlapping, and spatial arrangements were given
little attention, considering that much of what graphic designers do
is arranging elements on a surface. Of the courses, 20% addressed
these topics; however, this was mostly done by emphasizing the
math involved, thereby, failing to demonstrate how the topics could
be practically applied in graphic design projects.

Figure 1: The populated course matrix, providing an overview of
the analyzed courses (see Section 3 for additional information).

Domain Activity Item
Visual Programming Curriculum
Graphic Coding Syllabus
Design Course
Creative Class

Table 1: Search queries were constructed by combining one
keyword from each column.

Programming Topics
IDE intro 9%
Syntax & Reference 10%
Comments 12%
Flow Control 14%
Variables 17%
Operators & Expressions 18%
Conditionals 21%
Output: Console 21%
Loops 23%
Debugging 24%
Input: Mouse 26%
Input: Keyboard 33%
Functions 36%
Arrays 37%
Events 42%
GUI 47%
Timers 51%
OOP 51%
Input: Touch 57%
API’s 61%
Libraries (3rd party) 62%
Browser DOM 62%
Data Import 63%
Data Export 63%
Recursion 64%
Hardware & Electronics 69%
Network 76%

Graphic Design Topics
Coordinate System 12%
Graphic Primitives 13%
Color 14%
Shapes (Custom) 27%
Randomness &
Noise

27%

Transformations 37%
Motion & Animation 38%
Mathematics 39%
Typography 39%
Text 45%
Images 47%
Collisions 53%
Comp. Aesthetics 55%
Video 56%
Pixel operations 57%
Sound 66%
Vectors 70%
3D 72%
Comp. Vision 82%

Table 2: The average order in which programming topics and
graphic design topics were taught (%-values denote when the

topic was taught relative to the entire course duration).

S. M. Hansen / Mapping Creative Coding Courses

©c 2019 The Author(s)
Eurographics Proceedings ©c 2019 The Eurographics Association.

18

Graphical User Interface (GUI) was discussed in 27% of the
courses. A simple GUI provides students with a familiar way to
explore the inherent aesthetic potential of a code without having to
continually recompile or resort to arbitrary keyboard/mouse inputs.
In courses that used Processing, the built-in “Tweak Mode”
provided a rudimentary GUI within the IDE itself, allowing
students to experiment with different values and receive immediate
visual feedback. However, this option was only mentioned
explicitly in two courses. GUI was more frequently discussed in
courses that used p5.js, likely because a range of basic interface
elements are readily available within the browser DOM.

Math, rarely incorporated in graphic design curricula, is an
essential component of Creative Coding. Of the courses, 63%
introduced basic algebraic, trigonometric, and geometric
principles. Often, math was introduced using an apologetic tone,
building on the assumption that graphic designers lack numeracy
skills. One course featured a scheduled “Math Day!”, with an
exclamation mark to indicate caution or danger. This discourse
may inadvertently have reinforced the students’ pre-conceived
notions that programming is hard to learn.

4. Discussion

Several researchers argue that the principles of coding share
conceptual aspects with the principles of design [Tob12b; You01].
Despite their commonalities, notable differences were observed in
how Creative Coding courses were structured and what content
they included depending on the course instructor’s disciplinary
background. To elaborate on this, the generalized opposing notions
of code-first approach versus design-first approach are introduced.

A code-first approach refers to programming educators who
plan a Creative Coding course thinking, "how can I make graphic
designers understand what programming is?" This approach forces
graphic design topics to adapt and submit to programming
paradigms. Typically, students learn how to convert well-known
graphic design methods into the medium of code. Assignments are
primarily given to test the students' proficiency at programming
and refrain from assessing the aesthetic aspects of the students'
works. Little attention is given to connecting the activity of
programming with the students’ field of study. This implies formal
rigor and adherence to the established programming practices.

A design-first approach refers to design educators who plan a
Creative Coding course thinking, "how can I make graphic
designers use programming in their work?" This approach employs
programming to explore graphic design topics computationally.
Typically, students learn how to expand the boundaries of their
discipline through the medium of code. Assignments are primarily
given to test the students' ability to arrive at new visual expressions
and refrain from assessing the quality of their code. Great attention
is given to connect the activity of programming to the students’
field of study. This implies exploratory discovery and a casual
treatment of code.

4.1 Structure

The majority of the analyzed courses exhibited evidence of having
been planned utilizing a code-first approach. Programming
terminology was often favored over equivalent graphic design
terminology (e.g. "loop" instead of "repetition," "output window"
instead of "canvas"). Assignments focused on testing if students
had understood a given programming topic and downplayed the
assessment of their aesthetic quality. A consequence of structuring
the course and teaching materials using a code-first approach is that

students fail to utilize their existing, domain-specific, graphic
design knowledge as a basis for constructing and acquiring new
knowledge in a programming domain that is unfamiliar to them,
which is an essential premise in constructionist learning theory
[Pap87]. For example, graphic design students can use their
existing knowledge of two-dimensional grids to leverage their
understanding of the abstract concept of “nested for loops,” a
strategy specifically employed in five of the analyzed courses.

Another example of how the two approaches affected the syllabi,
respectively, can be given by looking at how the topic of color was
taught. Most of the analyzed courses used a code-first approach by
taking the language reference of the chosen programming
environment as an offset to discuss specific functions used to define
and manipulate colors, thereby, leaving students to explore colors
computationally within the confinements of the programming
environment. Had a design-first approach been used, color theory,
which has been established over centuries, could be used as a
reference to discuss how colors can be defined and used
computationally. Aside from replicating certain mathematical
principles used to create harmonious color schemes, courses might
also discuss new techniques that have become available through
computation, e.g., creating palettes by sampling pixel values from
an image, pixel-sorting, computing dominant colors, and
connecting to APIs like COLOURLovers [Col18].

A few of the analyzed courses had been planned utilizing a
design-first approach. One example was the course "Printing Code"
[Mad16], taught at ITP by Rune Madsen. In his course, Madsen
constructed a syllabus that stayed deeply rooted in graphic design
and introduced programming topics only as they were required to
illustrate, extend, and explore a particular graphic design principle.
Although an advanced course assuming prior programming
knowledge and, thus, excluded from the analysis, another
noteworthy course was “Computational Form” [Bak18], taught at
the Parson School of Design by Justin Bakse. Through highly
visual and interactive course materials, adapted to cater to the needs
of design students, this course established an exploratory
environment where programming was taught with the clear
intention of empowering Art and Design students to investigate
new modes and forms of expressions as well as where
programming topics were chosen for their ability to produce
aesthetical output, rather than their canonical value within
Computer Science.

Studies [DG06; Guz10] suggest that contextualizing
programming into a setting more familiar to the audience positively
affects student retention and motivation; thereby, research further
prompts educators to use a design-first approach when planning
Creative Coding courses intended for graphic designers.

4.2 Content

All courses dealt mainly with foundational graphic design topics,
e.g., color, shapes, and typography. This is hardly surprising, as
these are considered to be the basic components of the graphic
design trade and, as such, would be expected to appear in an
introductory level course. Absent in most courses, however, were
topics and algorithms of particular value to graphic design as a
spatial practice (e.g., object distribution, space filling, space
partitioning, and overlap detection). While arguably more complex
to implement and understand, it is pivotal to include these in a
Creative Coding syllabus, as they can address and provide
solutions to well-known issues experienced by graphic design
students in their daily work.

S. M. Hansen / Mapping Creative Coding Courses

©c 2019 The Author(s)
Eurographics Proceedings ©c 2019 The Eurographics Association.

19

Few courses investigated algorithms that produce a visual output
that is only achievable through computation (e.g., glitch art, ASCII
art, cellular automata, emergence, L-systems, fractals, self-
organizing systems, evolutionary design, and drawing using data
feeds). An example of one such course was "Computer Graphics
con p5.js" [Bel17] at the Brera Academy of Fine Arts, taught by
Prof. Antonio Belluscio. This course discussed topics like
attractors, fractals, autonomous agents, and flocking behaviors,
partially through presenting cases employing the technique and
partially by providing simple code examples for students to explore
at times. Conversely, courses that neglected to examine the
potential of the computational aesthetic and its associated
techniques taught students to use code to create works that
originated in graphic design principles belonging in the pre-
computer design era. This is counterproductive to the aim of
educating graphic design students who can expand the boundaries
of their discipline through the medium of code.

A final observation worth mentioning is that virtually all of the
courses encouraged students to sketch their ideas on paper before
performing any coding. Two of the courses even required the first
exercises (involving harmonographs, automatons, and tiling
patterns) to be solved using only pen, paper, and cardboard,
thereby, using a familiar and “safe” medium to help students
understand the principles involved in computational thinking
[KP16; Win06]; this could potentially help disarm any premature
aversion towards programming. However, as truly indigenous
computational aesthetics are typically generated through
computationally intensive calculations, they are virtually
impossible to express manually in an analog sketch. To escape the
inherent expressive limitations of physical materials, it is important
that educators stress to their students that sketching solely using
code is equally as important.

5. Implications & Future Research

Programming allows graphic designers to unlock and explore a
new code-driven visual paradigm, but they must be inspired and
given the necessary skills to do so in a way that builds upon and
extends their pre-existing knowledge. This study indicates plenty
of opportunities for educators to rethink and restructure how
Creative Coding courses are currently taught in design schools.
Considering the results obtained in this study, it is argued that
educators must use a design-first approach when planning the
structure and content of Creative Coding courses intended for
graphic designers. A design-first approach is considered to be
essential to effectively promote and embed programming as an
established practice in graphic design education.

This study’s data and the conclusions derived thereof are
currently being used to develop a bespoke Creative Coding
syllabus especially for use in design schools. Also underway is a
study investigating the relationship between the students'
motivations and the aesthetic quality of their assignments. Finally,
dedicated research on the pedagogical and didactical strategies
employed in the courses can further inform and encourage a
dialogue among both programming and graphic design educators.

Acknowledgements

The author would like to thank all instructors whose courses
formed the basis of the analysis. They all have put tremendous
effort into creating their courses and have been kind enough to
share them online.

References

[Ami11] AMIRI, F.: Programming as design: The role of programming in
interactive media curriculum in art and design. International Journal
of Art and Design Education 30, 2 (2011), pp. 200–210.

[Bak18] BAKSE, J.: Hello, Comp Form! Comp Form (2018).
http://compform.net/.

[Bel17] BELLUSCIO, A.: Computer Graphics con p5.js. Exframes (2017).
https://www.exframes.net/cg-p5js/.

[Col18] COLOURLovers: COLOURlovers API Documentation.
COLOURLovers (2018). https://www.colourlovers.com/api.

[DG06] DORN, B., GUZDIAL, M.: Graphic designers who program as
informal computer science learners. Proceedings of the 2006
international workshop on Computing education research (2006), pp.
127–134. (Proc. ICER '06).

[FR14] FRY, B., REAS, C.: Processing: a programming handbook for
visual designers and artists. MIT Press, 2014. http://processing.org/

[Guz10] GUZDIAL, M.: Does Contextualized Computing Education
Help? ACM Inroads, 1, 4 (2010), pp. 4–6.

[KP16] KNOCHEL, A. D., PATTON, R. M.: If Art Education Then Critical
Digital Making: Computational Thinking and Creative Code. Studies
in Art Education 57, 1 (2016), pp. 21–38

[Mad15] MADSEN, R.: On Meta-Design and Algorithmic Design
Systems. Rune Madsen (2015). https://runemadsen.com/blog/on-meta-
design-and-algorithmic-design-systems/.

[Mad16] MADSEN, R.: Programming Design Systems. Programming
Design Systems (2016). http://printingcode.runemadsen.com/.

[MB13] MITCHELL, M. C., BOWN, O.: Towards a creativity support tool
in processing. Proceedings of the 25th Australian Computer-Human
Interaction Conference on Augmentation, Application, Innovation,
Collaboration (2013), pp. 143–146. (Proc. OzCHI '13).

[MFR15] MCCARTHY L., FRY B., REAS C.: Make: Getting Started with
p5.js. MakerMedia Inc., 2015. http://p5js.org/

[Pap87] PAPERT, S.: Constructionism: A New Opportunity for
Elementary Science Education. National Science Foundation NSF
Award Search: Award #8751190 (1987).

[Pet12] PETTIWAY, K.: The New Media Programme: Computational
thinking in Graphic Design Practice and Pedagogy. Journal of the New
Media Caucus 8, 1 (2012).

[Sau13] SAUNDERS, S.: Coding as Craft: Evolving Standards in Graphic
Design Teaching and Practice. AIGA Design Educators Community
(2013).

[Tob12a] TOBER, B.: Making the Case for Code: Integrating Code-Based
Technologies into Undergraduate Design Curricula. Catch22: Eighth
Annual UCDA Design Education Summit Abstracts & Proceedings
(2012), pp. 224–229.

[Tob12b] TOBER, B.: Creating with Code: Critical Thinking and Digital
Foundations. Mid-America College Art Association Conference
(2012).

[TF17] TZANKOVA, V., FILIMOWICZ, M.: Introduction: Pedagogies at
the Intersection of Disciplines. In FILIMOWICZ, M., TZANKOVA, V.
(eds.): Teaching Computational Creativity. 1st ed. Cambridge:
Cambridge University Press, 2017, pp. 1–17.

[Win06] WING, J. M.: Computational Thinking. Communications of the
ACM 49, 3 (2006).

[You01] YOUNG, D.: Why designers need to learn programming. In
HELLER, S. (ed.): Education of an e-designer. New York, NY, USA:
Allworth Press, 2001.

S. M. Hansen / Mapping Creative Coding Courses

©c 2019 The Author(s)
Eurographics Proceedings ©c 2019 The Eurographics Association.

20

