EUROGRAPHICS 2017/ 7J.J. Bourdin and A. Shesh Education Paper

bRenderer: A Flexible Basis for a
Modern Computer Graphics Curriculum

B. Biirgisser, D. Steiner, and R. Pajarola

Visualization and MultiMedia Lab,
Department of Informatics, University of Zurich

Figure 1: Example project demonstrating the capabilities of bRenderer in an interactive graphics demo.

Abstract

In this article, we present bRenderer, a basic educational 3D rendering framework that has resulted from four years of experience
in teaching an introductory-level computer graphics course at the University of Zurich. Our renderer is based on the observation
that teaching a single basic but comprehensive computer graphics course often means to face the choice between students
learning a low-level graphics API bottom-up on one side, or a powerful (game) engine on the other. Solutions between these
two extremes tend to be either too rudimentary to easily allow advanced visual effects in student projects, or too abstract to
facilitate learning about the underlying principles of computer graphics. Our platform-independent framework abstracts the
functionality of its underlying graphics API and libraries to an extent that still preserves the main concepts taught in a computer
graphics course. Consequently, bRenderer can be used in student projects, as well as in exercises. It helps students to easily
understand how a renderer is implemented without getting distracted by the particular implementation of the framework or
platform-specific characteristics.

Categories and Subject Descriptors (according to ACM CCS): K.3.2 [Computers and Education]: Computer and Information
Science Education—Computer science education

(© 2017 The Author(s)
Eurographics Proceedings (©) 2017 The Eurographics Association.

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY
DOI: 10.2312/eged.20171023 www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/eged.20171023

28 B. Biirgisser & D. Steiner & R. Pajarola / bRenderer: A Flexible Basis for a Modern Computer Graphics Curriculum

1. Introduction

Computer graphics (CG) tends to be a demanding subject for
students, especially when taught at an undergraduate level, as it
requires not only basic knowledge of linear algebra but usually
also C++ programming, algorithms and solid software engineer-
ing skills. The situation has been further complicated by ongoing
changes and updates in graphics hard- and software that in turn also
changed the computer graphics curriculum at many universities.
The University of Zurich has offered both theoretical (CG Lecture)
and practical (CG Lab) computer graphics courses at undergradu-
ate and graduate level for a number of years. The CG Lab course (6
ETCS points) depends on the simultaneous or prior completion of
the CG Lecture (3 ECTS points) and is based on 6 weekly program-
ming assignments followed by a final 6-week student project that
encourages students to explore more advanced CG topics. For the
practical CG Lab course we originally relied on classic immediate
mode OpenGL examples, using the GLUT library [GLU] with a
traditional fixed-function rendering pipeline. To follow the advanc-
ing CG standards, in 2013 we abandoned this approach in favor
of OpenGL ES and iOS on the iPad platform, which we now use
for exercises and student projects. This environment is widespread,
well supported and allows for motivating projects despite the limi-
tations of a single course, in terms of 3D content and CG function-
ality. Since then, we have also offered course participants a simple
CG framework for programming the iPad, which is provided for the
duration of the course. In 2014, we further updated the lab course
to fully incorporate shaders into the framework, making better use
of the iPad platform’s freely programmable GPU.

When first exposing students to shader programming in a basic
but still comprehensive CG course, we noticed that using shaders
for more advanced features seemed to be difficult for many course
participants, as few made extensive use of them. Although our
framework simplified texture, geometry, and shader usage, students
noted that features such as render-to-texture still required much
OpenGL boilerplate code and knowledge of the internal framework
implementation. Hence, although producing interesting results (see
Section 3), course participants typically did not implement more
advanced techniques like shadow mapping in their student projects,
due to time constraints. We alleviated this issue by constantly im-
proving the framework based on student feedback. In particular, we
made the API easier to use and found more sensible abstractions for
underlying graphics primitives (as explained in Section 4), still al-
lowing full access to the underlying OpenGL ES implementation.

Our experiences illustrate the tradeoff that has to be considered
when selecting or designing a framework for CG education. Find-
ing the right software tools for such a course is not an easy task, as
professional game engines may be too abstract and comprehensive
to teach fundamental CG concepts, while large middleware, such
as OGRE [ogr], might be difficult to understand for students who
take their first steps in the field. Directly using a graphics Appli-
cation Programming Interface (API) such as OpenGL, on the other
hand, can be especially inefficient for student projects, since such
an approach often requires great diligence of course participants to
achieve even simple graphical effects.

Consequently, the last iteration of our framework, the Basic Ren-
derer (bRenderer), has been considerably improved to aid teach-

ing of topics such as geometric objects, transformations, illumina-
tion, shading, texturing and shadows, while at the same time ef-
fectively supporting students in implementing more advanced CG
techniques. To this aim, we also provide an extensive online doc-
umentation of the framework. Note that our observations, experi-
ences, and conclusions primarily apply to the scenario where CG
and its practical application is taught in one single-semester course,
thus with limited time available to cover all the fundamental con-
cepts.

2. Related Work

As basis for a computer graphics course, it appears to be a straight-
forward solution to use a framework that has originally been in-
tended for computer games development. Such an approach was
chosen at ETH Zurich, where instead of a proprietary framework,
MonoGame [Mon] is used in their Game Programming Labora-
tory [Gam]. The course is intended for master students who are
already familiar with the basics of computer graphics, and focuses
more on the development of a video game than on teaching elemen-
tary CG concepts. Structurally and in terms of features, MonoGame
is similar to our framework. However, written in C# and based on
Microsoft’s XNA [XNA], MonoGame is a slightly more high-level
solution that is nevertheless well-suited for a more advanced course
with a focus on game development.

Conversely, driven by a trend to activity-led learning [AP09]
and practical courses, various tools and libraries have been cre-
ated and successfully used to teach computer graphics at an in-
troductory level. Since these are often specifically tailored to the
needs of the individual course or faculty at the university of ori-
gin, their priorities often vary widely. This is reflected in the imple-
mented functionality, the selected programming language and mid-
dleware, as well as the architecture and design. Two noteworthy ex-
amples, that we briefly contrast with our bRenderer framework, are
glGA [PPGT14] from the University of Crete and FUSEE [MG14]
from the University of Furtwangen.

2.1. glGA

glGA is a simple cross-platform framework that adopts modern
shader-based OpenGL and is written in C++. A major goal of the
framework is to hide non-graphics related functionality and expose
the GPU programming tasks, thus avoiding the steep learning curve
of a more complete graphics engine such as OGRE.

Compared to bRenderer, glGA is a more minimalist framework
that does not wrap its integrated libraries such as GLFW [GLF],
GLEW [GLE] or Assimp [ass]. Instead, utility classes are provided
to alleviate basic tasks, as for instance the loading of meshes, and
only wrap a small portion of the functionality provided by the li-
braries. Students therefore have to familiarize themselves with a
variety of different APIs instead of just one, as in our approach.

2.2. FUSEE

The Furtwangen University Simulation and Entertainment Engine
(FUSEE) is a cross-platform framework written in C#. Using the
Xamarin cross-compiler [Xam], it is possible to export applications

(© 2017 The Author(s)
Eurographics Proceedings (© 2017 The Eurographics Association.

B. Biirgisser & D. Steiner & R. Pajarola / bRenderer: A Flexible Basis for a Modern Computer Graphics Curriculum 29

to native Android and i0S, and even HTML 5, via translating the
framework’s core and the user-written application from the original
C# bytecode into JavaScript.

FUSEE further offers the possibility to either render an object di-
rectly, or to add it to a scene that can be traversed by a Scene Man-
ager later on. This class provides two features that are separately
implemented in our renderer as Object Manager and Render Queue
(see Section 4.5). Another feature, offered by both FUSEE and
bRenderer, is the possibility to either use simple shaders provided
by the framework, or to write custom shaders for more advanced
effects. Whereas FUSEE offers only a few prefab shaders, our
bRenderer framework is also able to generate application-specific
shaders, according to the user’s requirements (see Section 4.6).

Additionally, FUSEE features audio and physics support; this is
currently not offered by our solution, which is designed as a ren-
dering framework only.

3. Student Projects and Exercises

During our CG Lab course, students have to first successfully com-
plete 6 exercises (one exercise per week) covering elementary top-
ics, such as the basics of shader programming, the calculation of
face and vertex normals, (hierarchical) transformations, lighting
and shading, the usage of textures, as well as more advanced topics,
such as the implementation of normal mapping. Representative for
such an exercise is the following task:

Program a crude animated model of the solar system, in-
cluding the sun, all planets, and several moons, using hi-
erarchical transformations (by applying the appropriate
transformation matrices in the right order).

As a starting point for the respective exercise, students are provided
with an example project that just draws a sphere using our frame-
work. They are then required to extend the given program by cre-
ating and applying transformation matrices, writing corresponding
vertex and fragment shaders, etc. For each exercise, students can
collect a certain number of points, based on what tasks they suc-
cessfully complete and how well they manage to do so. In the first
half of the course, students are required to collect a minimum num-
ber of points to be allowed to continue.

In the second part of the course, provided that they successfully
completed the exercises, students are required to complete a project
work in small groups of about 3 people. In previous years, usually
about 19 students participated in 7-8 projects during the course.
Within 6 weeks, students have to propose, design, plan, and imple-
ment a computer game project that is eventually to be presented
in class. As they can only pass or fail in our course, this decision
depends on how well students accomplished the initially proposed
goals for their projects, also in comparison with their peers. As part
of these goals, students are also required to implement more chal-
lenging techniques; recent examples are shadow mapping or post-
processing effects. These can be proposed by the students them-
selves, or are suggested by the teacher of the course for each project
individually during the project’s early design phase.

Examples of student projects from recent years are depicted in

Figure 2. The example from 2016 makes use of shadow mapping,

(© 2017 The Author(s)
Eurographics Proceedings (©) 2017 The Eurographics Association.

Omin 22
Poweru

Figure 2: Screen-shots from student projects of recent years, 2014
to 2016 (top to bottom).

more advanced shaders for rendering ground and trees, distance
fog, as well as a bloom post-processing effect. These effects are
more clearly visible in a captured video of this game, available on
the bRenderer homepage, see Section 4. The earlier projects, on the
other hand, typically used comparably simple techniques, such as
very straightforward cartoon-style shading (2014 example), or rela-
tively easy to achieve effects like reflective water surfaces based on
environment mapping (2015 example). Similar to other more sim-
plistic frameworks, such as glGA, previous iterations of our frame-

30 B. Biirgisser & D. Steiner & R. Pajarola / bRenderer: A Flexible Basis for a Modern Computer Graphics Curriculum

work required students to write lots of error-prone OpenGL boiler-
plate code to achieve effects, such as those used by aforementioned
student project of 2016. In contrast, by providing sensible abstrac-
tions for OpenGL framebuffer objects, as well as render-to-texture
and post-processing effects, our recent framework makes related
techniques much easier to implement. In fact, over the previous
years, we observed that the techniques students were able to im-
plement in their projects became more complex as we improved
the abstractions that our framework provides, leading to its cur-
rent iteration, bRenderer. As the most recent project showcases, our
framework allows students to engage with more complex CG topics
much easier than previously feasible. Additional features, such as
text rendering, as shown by the same example in Figure 2, further
alleviate the development of computer games.

4. Framework Description

bRenderer was developed as a cross-platform 3D rendering frame-
work that is specifically tailored to the needs of a computer graphics
course. It is based on the experiences of several years of teaching
computer graphics, as well as the code base of the previous itera-
tion of our framework. bRenderer abstracts the functionality of its
underlying graphics API and libraries to an extent that still allows
students to easily grasp the concepts and techniques to be taught.

Compared to glGA or our previous framework, which provide
abstractions for only the most essential elements required to draw
models, such as shaders, meshes and textures, bRenderer offers
a large number of features with a consistent interface (see Sec-
tion 4.1). Simultaneously, it remains close to the native underlying
graphics API and the C++ programming language, unlike FUSEE
for example.

Instead of writing complex OpenGL function calls, more ad-
vanced techniques such as drawing to texture, can be achieved
with only a few lines of code, as illustrated in the following list-
ing. The example code shows the creation of a framebuffer and a
texture object. In the render loop, the framebuffer can be bound
and a texture to draw to may be specified. A Boolean parameter de-
termines whether the previously active framebuffer will be bound
again, when unbinding the custom framebuffer object.

I FramebufferPtr fbo = bRenderer () .getObjects ()
—->createFramebuffer ("fbo");
2 TexturePtr fbo_texture = bRenderer() .
getObjects () ->createTexture ("fbo_texture",
0.f, 0.f);

4 /x in render loop x/
5 fbo->bindTexture (fbo_texture, true);

Our framework’s well-documented code base is accompanied by
online guides and a comprehensive example project demonstrat-
ing the renderer’s capabilities, as shown in Figure 1. This allows
students to quickly familiarize themselves with the API and easily
comprehend how to achieve also advanced effects, or how to extend
and customize the framework.

Both the documentation and the full source code including ex-
ternal libraries and the example project are provided at the bRen-

derer homepage that can be accessed via http://ifi.uzh.
ch/vmml.

Our framework is deliberately written in C++ to the largest ex-
tent feasible, as the programming language is very prevalent in
CG development, unlike the iPad platform’s native ObjectiveC lan-
guage, or more abstract languages like C#, as used by the FUSEE
framework. Moreover, many students already have some experi-
ence in C++ from other courses. As a rendering module, bRenderer
can be integrated into applications very easily by inheriting an ab-
stract class called IRenderProject, as shown in Figure 3. The appli-
cation is then required to implement only three callback functions
in order to ensure minimal compatibility with the renderer:

e An initialization function that is called during the setup of the
renderer, responsible for the loading of models, creation of lights
and cameras, the definition of variables, etc.

e An update function that is called every frame for updating and
drawing the scene or loading and creating new objects if re-
quired.

e A finish function is called when the renderer is shut down and
allows the deallocation of memory and other resources.

Renderer
<<Interface>>
-_view: View IRenderProject

-_input: Input
-_objectManager: ObjectManager -bRenderer(): Renderer

-_modelRenderer: ModelRenderer

+initFunction(): void
+loopFunction(): void
+terminateFunction(): void

RenderProject

+initRenderer(...): bool

Figure 3: A project using the renderer inherits the abstract class
IRenderProject.

A project inheriting the aforementioned abstract class automat-
ically holds an instance of the renderer, which itself maintains a
pointer to the project for callbacks. In the application, the renderer
can then be simply acquired via an accessor function.

4.1. Feature Overview

bRenderer is equipped with a variety of tools to enable beginners to
easily draw geometry to the screen and facilitate creating advanced
effects, later in a computer graphics course. To ensure a gradual
learning curve, many tasks may be completed at different levels of
abstraction and complexity.

Students new to computer graphics are able to load 3D models
with a simple function call to the object manager, one of the four
main modules of the renderer (explained in Section 4.2), only pass-
ing the filename as an argument. The material is then loaded auto-
matically, and suitable shaders are generated. In the loop function
of an application, another method provided by the model renderer
(see Section 4.2) can be invoked to draw a model. This method

(© 2017 The Author(s)
Eurographics Proceedings (© 2017 The Eurographics Association.

http://ifi.uzh.ch/vmml
http://ifi.uzh.ch/vmml

B. Biirgisser & D. Steiner & R. Pajarola / bRenderer: A Flexible Basis for a Modern Computer Graphics Curriculum 31

simply takes the model itself, the model matrix, the view matrix
and the projection matrix as arguments. As a result, the instructor
of the course is able to discuss the mathematical principles of CG
without initially overwhelming the class with shader programs and
implementation details of the framework.

As soon as the students are familiarized with the framework, ob-
jects such as cameras and lights may be introduced and custom
shader files can be loaded to accomplish more sophisticated ef-
fects. To pass supplementary shader uniform variables, an instance
of the renderer’s Property class can be created. Alternatively, uni-
form variables can be passed directly to the shader.

Experienced programmers benefit from the customizability and
extensibility of the renderer and may invoke functions using many
more arguments, which are otherwise defined by default values.

To achieve post-processing effects and to enable multi-pass ren-
dering, regular textures or even cube- and depth-maps can be bound
to the framebuffer object abstraction provided by the framework.
The concepts of how to create shadows and reflections in a 3D
scene can thus be learned without the numerous function calls to
OpenGL, which have proven to be difficult to use for students in a
compact graphics lab.

Another feature worth to be noted is the support of text render-
ing. Fonts are loaded with the aid of the FreeType library [frec]
and can be drawn as text sprites. The texture atlas containing the
characters may be applied to custom models as well, since it can
be obtained from the framework’s Font class via a simple accessor
function.

The following list presents the most important features of our
renderer within the limited scope of this report:

Cross-platform compatibility

User inputs

Windows (and views on i0S) with OpenGL context

Object management

Adjustable global configurations

Queuing render calls (transparency sorting and sorting for effi-

ciency)

Bounding volumes and culling

OBJ loading (materials and models)

Sprites and text sprites

Fonts

Textures (including cube maps and depth maps)

Framebuffers (allow drawing to textures)

Shaders

— Loading shaders from files

— Generation of shaders according to user specifications or ma-
terial data

e Camera objects

e Light objects

4.2. Design

We designed our renderer with the Model-View-Controller (MVC)
pattern in mind. Its functionality is therefore divided into modules
as illustrated in Figure 4.

(© 2017 The Author(s)
Eurographics Proceedings (©) 2017 The Eurographics Association.

The information needed to draw geometry to the screen is stored
as objects such as models, cameras and lights. Those are main-
tained in the ObjectManager class (model in MVC), allowing ob-
jects to be loaded, created, accessed and removed at any time with-
out the risk of memory leaks, since every object name can exist
only once and reference counting provided by smart pointers re-
moves objects as soon as they are no longer required.

The framework maintains a view on iOS or a window on desktop
systems that displays the rendered images. To provide a coherent
interface on all platforms, this functionality is abstracted by the
View class. It offers a multitude of options to adjust it to the needs
of an application, including changing its position or resolution and
delivers useful information such as the current aspect ratio or the
resolution of the screen being used. Objects stored in the object
manager may be drawn to the view either directly, or they can be
queued and sorted first using the renderer’s model renderer.

Although the user’s project controls what is to be displayed on
the screen, the renderer provides a useful tool that allows for the
user to interact with the application. This happens in the form of
the Input class, which is closely coupled with the view. The ab-
straction of user input is performed on a low level, as touch events,
for example. Consequently, high level abstractions, such as object
picking, must be provided by the application, if required.

The modular design of our framework allows to adjust it to the
application’s needs as the modules concerning view and input do
not rely on the modules managing and rendering the objects.

To simplify using the renderer, we created the Renderer class. It
is meant as the main gateway to the framework through which most
functionality can be setup and accessed. It maintains one instance
of each of the four building blocks of the framework (as illustrated
in Figure 4) to be able to draw objects to the screen. The Renderer
class allows for initializing its modules and running the render loop
with only two lines of code.

In the example code below, the renderer is initialized with op-
tional parameters to set the resolution, full screen mode, and title.
To achieve a similar initialization in glGA (Section 2.1), signifi-
cantly more complex code needs to be written by the user, includ-
ing various calls to external libraries and OpenGL.

1 /* initialize with optional parameters =/

2 bRenderer () .initRenderer (1920, 1080, false,
3 "The Cave - Demo");

4 /+ start main loop */

5 bRenderer () .runRenderer () ;

4.3. Cross-Platform Development

bRenderer was designed as a cross-platform framework running on
Windows, Mac, Linux and iOS and provides a consistent API on all
platforms. Our platform-specific windows and views are abstracted
by the View class and the closely coupled Input class. Whereas the
former provides an OpenGL context to present the rendered images
on the screen, the latter allows access to user inputs concerning the
view. Depending on the platform, inputs may originate from mouse
and keyboard or a touchscreen, respectively.

B. Biirgisser & D. Steiner & R. Pajarola / bRenderer: A Flexible Basis for a Modern Computer Graphics Curriculum

ModelRenderer ObjeCtManager

-_fullscreen: bool -_motionManager

+getWidth(): GLint
+getHeight(): GLint

Renderer
-_view: View
-_input: Input

+getKeyState(...): GLint

-_objectManager: ObjectManager -_models: unordered_map

-_renderQueue: RenderQueue -_textures: unordered_map
+drawModel(...): void L -_shaders: unordered_map
+queueModellnstance(...): void o
+loadObjModel(...): ModelPtr
+loadShader(...): ShaderPtr
+createMaterial(...): MaterialPtr

-_ohjectManager: ObjectManager
-_modelRenderer: ModelRenderer

+initRenderer(...): bool

Figure 4: The framework’s functionality is provided by four major modules.

Our framework automatically recognizes the operating system
(OS) it is being compiled for and defines preprocessor macros in
a header file. It internally decides which implementations of the
View and Input classes are to be used, and for its objects relying on
OpenGL, compatible calls to the graphics API are chosen. Thus, the
renderer can be used on all supported platforms in the same manner
and code written for a specific platform will not cause errors when
an application is ported to another supported OS.

4.4. Libraries

The choice of the underlying libraries is based on the idea of keep-
ing the framework lightweight, modern and easily comprehensi-
ble. For this reason we did not consider GLUT [GLU] for our ren-
derer as it is not actively supported anymore, nor is it open source.
FreeGLUT [Frea] as an open source alternative is still actively
maintained, yet based on the deprecated GLUT API.

We therefore chose GLFW as a small and modern C library to
complement our renderer on desktop systems. During the course
of development, we experienced it as reasonable and easily under-
standable. Since GLFW does not support iOS, we used the UIKit
[UIK] framework supplied by Apple to implement our own view
for the iPad platform.

Additionally, we added GLEW [GLE] for loading OpenGL ex-
tensions, FreeType [frec] and Freetype-gl [fred] to support for a
wide variety of font formats, and FreeImage [freb] to enable image
support for texture creation.

Since the underlying geometric concepts of 3D models are a ma-
jor part of our curriculum, we tried to keep them accessible by
choosing the human-readable Wavefront OBJ format and parse the
files with libobj [lib].

With the exception of the math library vmmlib [vmm], libraries
are abstracted by the classes that use them and are not supposed to
be used directly, thus ensuring a simple and consistent API across
different platforms.

4.5. Drawing

Drawing in our renderer is based on objects implementing the
IDrawable interface, having the single responsibility to draw the
data they hold. This data is often originally provided by an accom-
panying data class. Additional classes can be used to define certain
properties of the object to be drawn, including camera and light
classes, as well as shaders and textures.

To simplify the drawing process for unexperienced program-
mers, we created the model renderer. It is one of the four modules
introduced in Section 4.2 and allows for drawing objects with a
simple function call. The model renderer is capable of drawing to
the view directly or queuing the draw call using a render queue.

The render queue allows for storing and caching draw calls. Its
main feature is the ability to sort draw calls according to distance
(for transparency sorting) or by material properties (such as shaders
and textures) to avoid costly state changes as much as possible.

4.6. Shaders

Our renderer is based on the programmable graphics pipeline and
thus relies on shaders to draw its objects. To ensure compatibil-
ity with older systems, the shader and corresponding data classes
cover only features that are part of OpenGL ES 2.0. Among others,
geometry shaders or uniform buffer objects are therefore not yet
supported by our renderer.

bRenderer allows experienced users to load their shaders from
custom shader files and additionally offers a shader generator for
quick and easy experimenting. Thus, our renderer features a collec-
tion of building blocks to create a large variety of shaders accord-
ing to the requirements, given by either material data or custom
settings.

5. Example Project

Over the course of development, the implemented features of our
renderer have constantly been tested and improved. To allow for

(© 2017 The Author(s)
Eurographics Proceedings (© 2017 The Eurographics Association.

B. Biirgisser & D. Steiner & R. Pajarola / bRenderer: A Flexible Basis for a Modern Computer Graphics Curriculum 33

D2Renderer

Press spacesto start

Figure 5: The example project demonstrates transparency sorting and post-processing effects.

assessing the techniques and their impact on performance, we cre-
ated an example scene. It should be visually appealing to increase
the motivation to work with the framework and illustrate most of its
capabilities, as well as its functional principles. It may therefore act
as a guide for programmers to gain a first impression on how the
provided functionality can be used, and might serve as a starting
point for their own applications.

The project was designed as an interactive graphics demo that
enables the user to explore a cave sparsely illuminated by glow-
ing crystals. To demonstrate the dynamic lighting capabilities of
the framework, we added a torch to the scene that moves with the
viewer to illuminate the environment close to the camera. An ex-
ample result is shown in Figure 1 and was successfully tested on
Windows, Linux, Mac OS X, and iOS.

On desktop platforms, the camera can be controlled using the
mouse to look around, as well as with the typical WASD key
scheme for movement. It additionally may be tilted and shifted up
and down with the arrow keys, so all possibilities for rotating and
moving the camera are demonstrated. On iOS, the left half of the
touchscreen is treated as the left stick of a game controller and is
responsible for movement, the right half is used to look around. The
touchscreen controls are illustrated in Figure 6. It is thus possible
to freely fly through the scene on all platforms, to closely inspect
the visual results produced by the different shaders applied to the
models.

Figure 6: The movement and camera controls on an iPad screen.

Since the renderer often provides multiple possibilities to
achieve a certain goal, the example project shows different strate-
gies for loading, creating and drawing a multitude of objects, which

(© 2017 The Author(s)
Eurographics Proceedings (©) 2017 The Eurographics Association.

are further explained in the form of comments. The following ex-
ample code demonstrates how objects are constructed in the initial-
ization function. Some shaders and materials are created separately,
whereas others are automatically read in or generated when loading
an OBJ model or building a sprite.

1 /* load materials and shaders =/

2 MaterialPtr flameMaterial = bRenderer () .
getObjects () ->loadObjMaterial (

"flame.mt1l", "flame", flameShader);

/* create properties for a model x/

PropertiesPtr flameProperties = bRenderer ().
getObjects () —>createProperties (

7 "flameProperties");

[= N T S

9 /+ load models =/
10 bRenderer () .getObjects () —>loadObjModel_o (

11 "crystal.obij");
12 bRenderer () .getObjects () —>1loadObjModel_o (
13 "cave.obj", 4, FLIP_T | FLIP_Z |

VARIABLE_NUMBER_OF_LIGHTS) ;
14 /+ create sprites =/
15 bRenderer () .getObjects () ->createSprite (

16 "sparks", "sparks.png");
17 bRenderer () .getObjects () —>createSprite_o (
18 "flame", flameMaterial, NO_OPTION,

flameProperties) ;

The example first illustrates how a custom material can be loaded
from a material file (line 2). A custom shader can be passed op-
tionally, alternatively the renderer generates a shader automatically.
Additional properties to be passed to the shader are created in the
next step (line 6).

When a model is loaded, we pass the name of the file to the func-
tion as the only mandatory argument (line 10). The example code
shows how the model of a cave is loaded with additional parame-
ters to automatically create a shader with a maximum number of
four light sources, which is variable (line 12). This means that a
lower number of lights might be passed to the shader when draw-
ing the model. In addition, the T-axis of the texture coordinates and
the Z-axis of the model are flipped.

34 B. Biirgisser & D. Steiner & R. Pajarola / bRenderer: A Flexible Basis for a Modern Computer Graphics Curriculum

As shown at the end of the code example, a sprite can be cre-
ated by passing only two arguments (its name and a texture, as in
line 15). Still, our framework allows for a lot of customizability
and flexibility by allowing to pass custom materials and additional
properties (line 17). This principle applies to all objects and is an
important part of the framework’s design that eases the first steps
for students at the beginning of a CG course, yet allows them to
achieve advanced effects at a later stage.

In contrast, previous iterations of our framework did not offer
the option to generate shaders, reuse materials and shaders for mul-
tiple models, or pass flags to customize the creation and loading of
objects. Thus, our framework has gained flexibility and customiz-
ability while it remained simple to use, as such customizations are
completely optional.

The main part of the scene is drawn using the render queue (Sec-
tion 4.5), allowing the crystals to be partially translucent due to
alpha blending. At startup and when pausing the demo, the queue
is not directly displayed, as the scene is blurred in a post-processing
step and a logo is shown (Figure 5). The 3 sprites necessary for this
effect are drawn directly to the screen, demonstrating the immedi-
ate drawing of models as well.

As the renderer is supposed to be used in computer graphics
courses, other post-processing effects such as reflections were re-
moved from the example project after testing was successful. This
allows for using the example project as a guide for students, with-
out giving away solutions for the assignments.

6. Discussion

Computer graphics is a demanding field for students and software
development alike. Beginners are confronted not only with linear
algebra and geometric concepts but also with geometric modeling,
color science, lighting and shading and a multitude of libraries and
APIs. To achieve a broad understanding of the underlying concepts
may therefore take up a lot of time and requires innovative learn-
ing strategies. Those can be based on both theoretical lectures and
practical courses, accompanied by accessible, yet powerful soft-
ware tools and frameworks.

We developed bRenderer as a cross-platform 3D rendering
framework, which is specifically tailored to the needs of a mod-
ern, practical and compact computer graphics course. It abstracts
the functionality of its underlying graphics API and libraries to an
extent that does not conceal the concepts to be taught, without be-
ing limited in functionality. The well-documented code base is ac-
companied by online guides and a comprehensive example project
demonstrating the renderer’s capabilities. This allows to quickly
familiarize with the API and to easily comprehend how to achieve
advanced effects or even extend and customize the framework.

However, we designed bRenderer as a rendering framework only
and it is therefore limited in scope. Whereas purely graphical tasks
may be performed quickly using the renderer, development of game
mechanics, animations or physics simulations is not covered by its
implementation. However, it is easily possible for students to access
bounding volumes and vertices of geometric objects to extend the
framework with such functionality.

Another limitation may arise from the choice to use the same
OpenGL features and utilizing the same shader programs on all
platforms. While this reduces the complexity of the code base and
facilitates platform-independence, it currently constrains the fea-
tures that can be used to the ones offered by OpenGL ES 2.0.

On the other hand, the basic design of our renderer offers flex-
ibility and modularity, allowing to easily integrate it into existing
projects. Moreover, its customizable and extensible nature as well
as its comprehensive feature list qualifies our framework not only
for taking the first steps in computer graphics but also for the use
in more complex applications and games.

References

[AP09] ANDERSON E. F., PETERS C. E.: On the Provision of a Com-
prehensive Computer Graphics Education in the Context of Computer
Games: An Activity-Led Instruction Approach. In Eurographics 2009 -
Education Papers (2009), Domik G., Scateni R., (Eds.), The Eurograph-
ics Association. doi:10.2312/eged.20091012. 2

[ass] Assimp. http://www.assimp.org/. Accessed: 12.01.2016.
2

[Frea] Freeglut. http://freeglut.sourceforge.net/. Ac-
cessed: 03.09.2015. 6

[freb] Freeimage. http://freeimage.sourceforge.net/. Ac-
cessed: 08.09.2015. 6

[frec] Freetype.
31.08.2015. 5,6

[fred] freetype-gl. https://code.google.com/p/
freetype-gl/. Accessed: 08.09.2015. 6

[Gam] Game programming laboratory. https://graphics.ethz.
ch/teaching/gamelabl6/home.php. Accessed: 19.02.2017. 2

[GLE] Glew. http://glew.sourceforge.net/.
30.08.2015. 2,6

[GLF] Glfw. http://www.glfw.org/. Accessed: 30.08.2015. 2

[GLU] Glut. https://www.opengl.org/resources/
libraries/glut/. Accessed: 03.09.2015. 2, 6

[lib] libobj. http://people.cs.kuleuven.be/~ares.
lagae/libobj/. Accessed: 05.09.2015. 6

[MG14] MUELLER C., GARTNER F.: Student Project - Portable Real-
Time 3D Engine. In Eurographics 2014 - Education Papers (2014),
Bourdin J.-J., Jorge J., Anderson E., (Eds.), The Eurographics Associ-
ation. doi:10.2312/eged.20141030. 2

[Mon] Monogame.
19.02.2017. 2

[ogr] Ogre. http://www.ogre3d.org/. Accessed: 12.01.2016. 2

[PPGT14] PAPAGIANNAKIS G., PAPANIKOLAOU P., GREASSIDOU E.,
TRAHANIAS P.: glGA: an opengl geometric application framework
for a modern, shader-based computer graphics curriculum. In Euro-
graphics 2014 - Education Papers (2014), Bourdin J.-J., Jorge J., Ander-
son E., (Eds.), The Eurographics Association. doi:10.2312/eged.
20141026. 2

[UIK] Uikit. https://developer.apple.com/library/
ios/documentation/UIKit/Reference/UIKit_
Framework/. Accessed: 30.08.2015. 6

[vmm] vmmlib. https://github.com/VMML/vmmlib. Accessed:
30.08.2015. 6

[Xam] Xamarin. https://xamarin.com/. Accessed: 13.09.2015.
2

[XNA] Xna. https://www.microsoft.com/en-us/
download/details.aspx?id=23714. Accessed: 19.02.2017. 2

http://www.freetype.org/. Accessed:

Accessed:

http://www.monogame.net/. Accessed:

(© 2017 The Author(s)
Eurographics Proceedings (© 2017 The Eurographics Association.

http://dx.doi.org/10.2312/eged.20091012
http://www.assimp.org/
http://freeglut.sourceforge.net/
http://freeimage.sourceforge.net/
http://www.freetype.org/
https://code.google.com/p/freetype-gl/
https://code.google.com/p/freetype-gl/
https://graphics.ethz.ch/teaching/gamelab16/home.php
https://graphics.ethz.ch/teaching/gamelab16/home.php
http://glew.sourceforge.net/
http://www.glfw.org/
https://www.opengl.org/resources/libraries/glut/
https://www.opengl.org/resources/libraries/glut/
http://people.cs.kuleuven.be/~ares.lagae/libobj/
http://people.cs.kuleuven.be/~ares.lagae/libobj/
http://dx.doi.org/10.2312/eged.20141030
http://www.monogame.net/
http://www.ogre3d.org/
http://dx.doi.org/10.2312/eged.20141026
http://dx.doi.org/10.2312/eged.20141026
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIKit_Framework/
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIKit_Framework/
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIKit_Framework/
https://github.com/VMML/vmmlib
https://xamarin.com/
https://www.microsoft.com/en-us/download/details.aspx?id=23714
https://www.microsoft.com/en-us/download/details.aspx?id=23714

