EUROGRAPHICS 2016/ B. Sousa Santos and J. M. Dischler

Education Paper

A Video Games Technologies Course:
Teaching, Learning, and Research

G. Amador'? A. Gomes'?

I'Universidade da Beira Interior, Covilha, Portugal.
2Instituto de Telecomunicagdes, Portugal.

Abstract

In the last decade, several higher education institutions began to provide courses and/or degrees in games content creation,
games design, and games development, largely because of the astonishing growth of games as one of the most powerful indus-
tries worldwide. This paper presents the course entitled “Video Games Technologies”, including its history, goals and method-
ology, as part of a MSc degree in Computer Science and Engineering. The focus is on the technologies, techniques, algorithms,
data structures, and mathematics behind the design and development of game engines, instead of games themselves.

Categories and Subject Descriptors (according to ACM CCS): K.3.2 [Computers and Education]: Computer and Information
Science Education—Computer Science Education; K.8.0 [Personal Computing]: General—Games

1. Introduction

In order to deal with the needs of the game industry [Ip12], higher
education institutions worldwide have introduced novel courses
and/or degrees in the last two decades [McG12]. In general, we
have two sorts of degrees in games. The first is more design and
arts-oriented, so that they essentially are bachelor/master degrees in
game design [CMA10]. The second sustains on computer science,
so that they are bachelor/master degrees in game development and
programming [Sun09]. We also find game-related courses in many
degree course structures in arts, design, and computer science.

The course briefly described in this paper, called Video Games
Technologies, is part of the MSc in Computer Science and Engi-
neering at the Universidade da Beira Interior, Covilha, Portugal.
The focus of this course is not on the design, prototyping, and de-
velopment (including programming) of video games. Instead, the
leading idea of this course is to highlight the mathematics, data
structures, and algorithms that sustain the design and development
of game engines (e.g., Unity3D [Dic15]). In other words, the idea is
not to build up a game, but to master the technologies behind game
engines.

The Video Games Technologies course is one of the optative
courses of the MSc in Computer Science and Engineering at the
University of Beira Interior. Its focus on game engine technologies
makes it different from the common game programming and de-
velopment courses, as those we find in standard curricula as argued
by Ritzhaupt [Rit09]. Furthermore, in order to develop the student
motivation and curiosity, the course promotes the learning by ex-

(© 2016 The Author(s)
Eurographics Proceedings (©) 2016 The Eurographics Association.

ample, being the students led to tackle open issues and challenges
at the research level. So, students end up learning how to extend a
game engine architecture by integrating novel features (e.g., data
structures and lagorithms) in either game sub-engine, not matter it
is a graphics engine, physics engine, artificial intelligence engine,
or else.

The rest of the paper is organized as follows. Section 2 reviews
previous work related with lecturing and learning video games
technologies. Section 3 overviews the video games technologies
course history. Sections 4 to 7 detail the course: objectives; pre-
requisites; syllabus; methodology, i.e., students assessment and
teaching methodology vs learning objectives. Sections 8 and 9 pro-
vide an preliminary assessment of the course methodology and a
critical discussion on the proposed course syllabus and methodol-
ogy. Finally, Section 10 draws relevant conclusions.

2. Related work

In higher education courses, game engines are used as a basis upon
which students rapidly develop a game prototype, simply because
constructing a game from scratch (i.e., without the support of a
game engine) is tiresome and takes so long time.

On the other hand, some authors argue that simplified game en-
gine tools such as, for example, the XNA framework [LSOS8], or
smaller libraries as Slick or the LightWeight Java Gaming Library
(LWIJGL) [GHTS09], are more suited for teaching game develop-
ment than mainstream industry game engines (e.g., Unity [Dic15]).
The rationale behind this is threefold: mainstream game engine’s

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY
diglib.eg.org

DOI: 10.2312/eged.20161027

www.eg.org



http://www.di.ubi.pt/~agomes/tjv/
http://www.di.ubi.pt/~agomes/tjv/
http://www.ubi.pt
http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/eged.20161027

46 G. Amador & A. Gomes / Video Games Technologies

learning curve is too long; mainstream game engines provide of-
ten excessive features for a learning environment; mainstream open
source game engines are monolithic. In true, the only mainstream
open source game engine available is the Unreal Engine 4, but it is
monolithic, i.e., it is not modular [Gre14].

In a way, this explains why some authors have endeavored to
develop didactic game engines, namely: Gedi [CRGO5], SAGE
[PKRO6], G3D [Grel4], Minueto [Den05], enJine [NBJT06], and
Mammoth [KVK*09]. In fact, these authors usually point out that
mainstream game engines lack modularity, and are not accompa-
nied by any open-source version. Nowadays, this scenario is seem-
ingly changing as game engine companies are making efforts to
also adapt their products to teaching. Regardless, these engines are
for industrial game development first and for teaching afterwards.

In regard to Video Game Technologies course, which focuses
on the mathematics, data structures, and architecture of game en-
gines, a game engine must satisfy two important requirements:
open source code availability and modularity. It happens that no
current mainstream game engine satisfies these two requirements;
hence, we have adopted the jMonkeyEngine 3.0. This enables stu-
dents changing and extending the functionalities of the game en-
gine in a more delimited part or module of the code, and in a more
controllable manner.

3. A Brief Course History

The Video Games Technologies course came into operation for the
first time in the academic year of 2008/09, after the Higher Edu-
cation Reform that took place in Portugal, in 2007, in conformity
with the Bologna Treaty.

The course has evolved since then into three main stages or fla-
vors: game development, didactic game engine development, and
research-oriented game engine development. The first stage took
place between 2008 and 2012, during which the focus was more
on the development of game prototypes, rather than algorithms
or techniques for game engines, on the XNA framework [LSO08],
simply because XNA was not open source. Recall that Microsoft
dropped its support for XNA in 2013.

The second stage lasted 2 years, between 2012 and 2014, dur-
ing which we developed an open-source, didactic Java-based game
engine, called NoGame Engine, to be used in practicals. However,
the lack of appropriate documentation and code samples, in quality
and quantity, undermined the success of this initiative. Neverthe-
less, this stage represents the start of a better awareness and con-
solidation of the teaching-learning model of the course around the
design and development of game engines, from the point of view
of software engineering.

The third stage started off in 2014 with the introduction of the
jMonkeyEngine 3.0 in the our course, which is a game engine
that builds upon Java programming language. It was chosen for
the following reasons: modularity, open source availability, cross-
platform availability, and thorough documentation, including tu-
torials, books, and small game prototypes and code snippets. Fi-
nally, we had a game engine capable of sustaining research-oriented
teaching and learning, as a result of open issues, challenges, and
small projects put forward to students.

4. Course Objectives
The general objectives of the course are:

e To endow students with skills in design, development, and inno-
vation in game engines, and their data structures and algorithms.

e To empower students with a holistic view of computer science
and engineering through video games.

e To prepare students for high-tech companies, and research at
MSc and PhD levels.

Regarding learning objectives, also called goals or specific ob-
jectives, at the end of course the student must be able at least to:

e Make a critical analysis of an algorithm associated with a spe-
cific game technology (e.g., a collision detection algorithm).

e Sketch an innovative algorithm as a result of a critical analysis
of a category of game engine algorithms.

e Implement, test and incorporate a game engine algorithm into
the jMonkeyEngine 3.0 (e.g., a pathfinder).

e Build a video game prototype on the top of a game engine.

5. Course Pre-requisites

The Video Games Technologies is an optative course of the first
year, second semester, of the MSc in Computer Science and En-
gineering. Students enrolling in this course may have a bachelor
degree in computer science or not. However, in order to succeed in
this course, students must master:

e Problem solving techniques.

e Object-oriented design and development of programs.

e The traditional data structures (e.g., arrays) and algorithms (e.g.,
graph search), as well as to be proficient in complexity analysis.

e Skills in computer graphics.

e Basics of image analysis and processing.

Therefore, in this course, it is expected that students are familiar
with the broad field of computer science, because sooner or later
they realize that video games technologies permeates the entire
knowledge body of computer science, including computer graph-
ics, computational geometry, and artificial intelligence.

6. Course syllabus

The main topics addressed during the video games technologies
course are the following:

e Introduction, Planning, and Project.
History of Games (week 1).

Game Genres (week 2).

Game Engines (week 3).

Object Data Structures (week 4).

Spatial Data Structures and Algorithms (week 5).
Scene Graph and Management (week 6).
Culling (week 7).

Terrain Generation and Modeling (week 8).
Motion and Collisions (weeks 9 and 10).
Game Physics (week 11).

Path Finding (weeks 12 and 13).

Game Networking (week 14).

© 2016 The Author(s)
Eurographics Proceedings (© 2016 The Eurographics Association.


https://www.unrealengine.com/what-is-unreal-engine-4
http://jmonkeyengine.org/

G. Amador & A. Gomes / Video Games Technologies 47

e Public Project Presentation (week 15).

Thus, the theoretical modules of the course are essentially or-
ganized according to the structure of the game engine into sub-
engines. This course organization also applies to practicals.

7. Course methodology
7.1. Student assessment

The Video Games Technologies course amounts to 6 out of 60
ECTS required to complete the first year of MSc degree. The first
year totalizes 60 ECTS equally distributed by 10 courses, with
5 courses per semester. The second year also corresponds to 60
ECTS, during which each student has to elaborate a master thesis
under supervision of a professor.

Portuguese student’s performance is evaluated according to the
grade point scale 0-20, as follows:

A (excellent) a grade in the interval [18,20];

B (very good, with few errors) a grade in the interval [16,17];

C (good, with some errors) a grade in the interval [14,15];

D (satisfactory, with many errors) a grade in the interval [12,13];
E (sufficient) a grade in the interval [10,11].

Note, that grades are rounded, e.g., a student with 9.5 marks passes
with a 10.

Student assessment is an important part of the teaching-learning
process, which is as follows:

e 1 project in games (8.0 marks).

o | scientific paper presentation (3.0 marks); this article works as
a basis for the project.

e 3 written theoretical tests (6.0 marks).

e 6 game engine programming tests (3.0 marks).

The student projects have three distinct evaluation phases:

1. Project’s architecture/prototyping hand-in (2 out of 8.0 marks).

2. Project’s alpha code hand-in with preliminary report (3 out of
8.0 marks).

3. Full project hand-in with final report, followed a week latter by
a assurance vivas (project defense) (3 out of 8.0 marks).

The project assessment rules are as follows:

e Project proposal goes out in the second week of the course.

e No project will be accepted beyond the deadline.

e The student must hand in the project (in a .zip file) to the instruc-
tors personally.

e The project lacks oral defense and practical demonstration in
public and in the presence of the instructors.

e Non-working projects will be graded with 0.

e Students demonstrating lack of (or superficial) knowledge on the
peculiarities in the development, implementation and testing of
their project will be graded with 0 in their projects, i.e., students
will be excluded for fraud.

e The final project must be accompanied with a report elaborated
in IATEX.

Each student develops an individual project. However, it is al-
lowed to students to work in group. In case of the project being

(© 2016 The Author(s)
Eurographics Proceedings (©) 2016 The Eurographics Association.

developed in group, each student develops a distinct algorithm. For
example, if the project is on pathfinding and artificial intelligence,
each student participating in the project has to design, develop (in-
cluding implementation), and test a distinct pathfinder. Here, it is
where the innovation comes in, because the student is encouraged
to propose new solutions to the problem he/she has in hand.

7.2. Teaching-learning methodology

The Video Games Technologies course is structured into theoreti-
cal lectures and practicals of 2 hours per week each, in a total of
15 weeks. Thus, we end up having 60 in-class hours of teaching
and learning by direct interaction between instructors and students.
Theoretical (T) lectures focus on theoretical concepts, methods and
algorithms, using the white board or projecting slides, as well as
discussing ideas with students whenever necessary. Practicals (PL)
are thought to develop the skills of students in programming of
game engines, in designing and programming new algorithms, as
well as in solving problems proposed by the instructor. Addition-
ally, the course includes 2 office hours per week in order to tu-
tor students, to help them in solving problems and challenges, as
well as to monitor students in developing their individual projects.
Students are also supposed to spend 100 hours of extra work off
classes.

Summing up, the Video Games Technologies course takes place
according to the following teaching-learning methodology:

o Theoretical classes (T). Theoretical classes in which one pro-
vokes, challenges and encourages students to present their ideas
and solutions to the problems posed by the teacher. -

e Practicals (PL). Practicals in which students are led to de-
velop algorithms introduced and discussed in theoretical classes.
These algorithms are implemented in Java and tested on jMon-
keyEngine 3.0.

o Tutorials (TT). Follow-up tutorial whenever students need it to
develop their projects or to consolidate their skills and knowl-
edge. The instructor helps students in solving problems dur-
ing classes, and promotes weekly tutorial sessions during office
hours in Medial.ab (research laboratory coordinated by the in-
structor) and/or in the instructor’s office in order to guarantee
the progressive improvement of student skills.

e Project (P). An individual project serves above all to develop an
algorithm that will be integrated into the jMonkeyEngine 3.0.

The idea is thus not only develop in students their skills in game
engine programming, but also a keen interest for science and re-
search.

8. Student ranking

In the second semester of the 2014/2015, the video games tech-
nologies course had a class of 21 students; 20 of the students suc-
cessfully completed the course. Considering the Portuguese grade
scale [0,20], 1 student ranked in the interval [10,11], 31in [12,13], 8
in [14,15], 5 in [16,17], 3 ranked in [18,20], and 1 of them stopped
attending classes after the first two weeks of the semester for un-
known reasons.

Most of the passing students had good scores in the practical



48 G. Amador & A. Gomes / Video Games Technologies

component of the assessment, i.e., practical tests and project. Their
projects were more focused on their assigned algorithms to imple-
ment than in a having a fully working game prototype. In the project
component, students scored well in the interval [5,8], with more
than 12 students scoring 6 or more points.

This is to say that the passing students did not present learning
difficulties in general. But, as expected, each student demonstrated
to be more or less prone/interested in some course subjects than
others. Interestingly, those students regularly attending the theoret-
ical classes ranked above those who sporadically attend the same
classes. Recall that the instructors did not force students to attend
classes, what is in line with the tradition of Portuguese Universities.

9. Discussion

The course was not intended to build games. Instead, it was
thought of to teaching and learning the technologies, algorithms,
and data structures underlying a game engine. Therefore, in respect
to project assessment, more relevance was given to the problem
solving and algorithmic design of each game prototype, in particu-
lar the integration of new extra algorithms into the game engine.

Regardless, students tend to focus more on doing a complete
game than on a working prototype, giving more importance to its
final visual aspect than to its underlying features. In fact, from the
student point of view, a game prototype owing the features required
in the beginning of the semester but lacking features such as, for ex-
ample, model loading and animation, game menus, and the like, is
not seen as a nice game. This motivation to do a complete game
appears to be a positive aspect, as it makes students blazing for re-
search and sometimes to pursue a master’s thesis in some of the
subjects addressed in the course. In fact, some students came up
later after concluding this course with new ideas to pursue in their
theses.

In comparison to other academic years, we found that the course
attained a significant level of maturity for the first time because we
used a game engine that meets the following requirements: modu-
larity, open source availability, cross-platform availability, and ex-
tensive documentation (i.e., tutorials, books, game prototypes, and
code snippets). As a consequence, students could develop all of
their potential at cognitive level, as well as at innovative level, in an
enthusiastic manner. Another consequence reveals itself in the in-
dicators of the success translated at a better ranking of the students
in both theoretical and practical tests, and clearly better, although
more complex projects.

10. Conclusions and Future work

The Video Games Technologies course has been a success at the
University of Beira Interior, as an optative course of the MSc de-
gree in Computer Science and Engineering, since 2008/2009. Ev-
ery year, more than 80% of master’s students enrol in the course.

Even so, we think that the theoretical modules need some im-
provements in order to allow students to be more effective in their
learning. In particular, they need to learn to better articulate the the-
oretical modules and practicals in order to boost their creativity and
innovation skills. Also, stronger foundations in mathematics would

certainly be a great help. So, we are considering the introduction of
on-demand maths refreshers whenever needed.

References

[CMA10] COMNINOS P., MCLOUGHLIN L., ANDERSON E.: Educat-
ing technophile artists and artophile technologists: A successful exper-
iment in higher education. Computers & Graphics 34, 6 (2010), 780—
790. doi:http://dx.doi.org/10.1016/j.cag.2010.08.
008. 1

[CRGO5] COLEMAN R., ROEBKE S., GRAYSON L.: Gedi: a game en-
gine for teaching videogame design and programming. J. Comput. Sci.
Coll. 21, 2 (2005), 72-82. http://dl.acm.org/citation.cfm?id=
1089063. 2

[Den05S] DENAULT A.: Minueto, an Undergraduate Teaching Develop-
ment Framework. Master’s thesis, School Of Computer Science, McGill
University, 2005. 2

[Dic15] DicksoN P. E.: Using Unity to Teach Game Development:
When You’Ve Never Written a Game. In Proc. ITiCSE ’15 (2015),
pp. 75-80. doi1:10.1145/2729094.2742591. 1

[GHTS09] GESTWICKI P., HADDAD A., TOOMBS A., SUN F.-S.: An
Experience Report and Analysis of Java Technologies in Undergraduate
Game Programming Courses. J. Comput. Sci. Coll. 25, 1 (2009), 102—
108. http://dl.acm.org/citation.cfm?1d=1619221.1619241. 1

[Grel4] GREGORY. J.: Game Engine Architecture (2nd edition). A. K.
Peters/CRC Press, 2014. 2

[Ip12] Ip B.: Fitting the Needs of an Industry: An Examination of Games
Design, Development, and Art Courses in the UK. ACM Trans. Comput.
Educ. 12,2 (2012), 1-35. doi1:10.1145/2160547.2160549. 1

[KVK*09] KIENZLE J., VERBRUGGE C., KEMME B., DENAULT A.,
HAWKER M.: Mammoth: a massively multiplayer game research frame-
work. In Proc. FDG ’09 (2009), pp. 308-315. doi:10.1145/
1536513.1536566. 2

[LSO8] LINHOFF J., SETTLE A.: Teaching Game Programming Using
XNA. In Proc. ITiCSE 08 (2008), vol. 40, pp. 250-254. doi:10.
1145/1384271.1384338. 1,2

[McG12] McGILL M. M.: The Curriculum Planning Process for Un-
dergraduate Game Degree Programs in the United Kingdom and United
States. ACM Trans. Comput. Educ. 12, 2 (2012), 1-47. doi:10.
1145/2160547.2160550. 1

[NBJTO6] NAKAMURA R., BERNARDES JR J. L., TORI R.: Using a Di-
dactic Game Engine to Teach Computer Science. In Proc. SBGAMES ’06
(2006). http://cin.ufpe.br/~sbgames/proceedings/tutorials/
SBGames06TC04_enJine.pdf. 2

[PKR06] PARBERRY I., KAZEMZADEH M. B., RODEN T.: The Art and
Science of Game Programming. In Proc. SIGCSE 06 (2006), pp. 510-
514. doi1:10.1145/1121341.1121500. 2

[Rit09] RITZHAUPT A. D.: Creating a Game Development Course with
Limited Resources: An Evaluation Study. ACM Trans. Comput. Educ. 9,
1(2009), 3:1-3:16. do1:10.1145/1513593.1513596. 1

[Sun09] SuNG K.: Computer Games and Traditional CS Courses.
Commun. ACM 52, 12 (2009), 74-78. doi:10.1145/1610252.
1610273. 1

© 2016 The Author(s)
Eurographics Proceedings (© 2016 The Eurographics Association.


http://dx.doi.org/http://dx.doi.org/10.1016/j.cag.2010.08.008
http://dx.doi.org/http://dx.doi.org/10.1016/j.cag.2010.08.008
http://dl.acm.org/citation.cfm?id=1089063
http://dx.doi.org/10.1145/2729094.2742591
http://dl.acm.org/citation.cfm?id=1619221.1619241
http://dx.doi.org/10.1145/2160547.2160549
http://dx.doi.org/10.1145/1536513.1536566
http://dx.doi.org/10.1145/1536513.1536566
http://dx.doi.org/10.1145/1384271.1384338
http://dx.doi.org/10.1145/1384271.1384338
http://dx.doi.org/10.1145/2160547.2160550
http://dx.doi.org/10.1145/2160547.2160550
http://cin.ufpe.br/~sbgames/proceedings/tutorials/SBGames06TC04_enJine.pdf
http://dx.doi.org/10.1145/1121341.1121500
http://dx.doi.org/10.1145/1513593.1513596
http://dx.doi.org/10.1145/1610252.1610273
http://dx.doi.org/10.1145/1610252.1610273

