
EUROGRAPHICS 2016/ B. Sousa Santos and J. M. Dischler Education Paper

Lowering the entry barrier for students
programming Virtual Reality applications

M. Lambers

Computer Graphics Group, University of Siegen, Germany

Abstract
In Computer Graphics, it is common practice to accompany lectures with hands-on tutorials and/or project assignments that
allow students to write and run their own interactive graphics applications. In the special case of Virtual Reality courses, this
approach is difficult to maintain since the software requirements pose a high entry barrier to students.
In this paper, we propose a technique to significantly simplify Virtual Reality application programming, and implement it in an
easy-to-use framework that supports the full range of typical Virtual Reality hardware setups, from head-mounted displays to
multi-node, multi-GPU render clusters. The framework lowers the entry barrier for students and allows them to focus on course
goals instead of fighting software complexities.

Categories and Subject Descriptors (according to ACM CCS): K.3.2 [Computers and Education]: Computer and Information
Science Education—Computer Science Education I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—
Virtual and Augmented Reality

1. Introduction

Virtual Reality (VR) courses at universities often target postgradu-
ate students because the entry barrier regarding hardware and soft-
ware has traditionally been high. Recently, the hardware situation
improved significantly with the availability of affordable sensor,
display, and interaction devices. Sousa Santos et al. [SDM15] doc-
umented a course taking advantage of this development.

However, software requirements for VR application program-
ming are still complex, and finding the right software to base a
course on is difficult [SDSS14, SDM15]. To cover the full range of
common VR setups, applications must be able to handle multi-GPU
and multi-node systems [EMP09]. The complexity of distributed
graphics applications is usually handled by a specialized frame-
work, but available frameworks come with their own complexities
and steep learning curves.

Consistent with observations made by Boers et al. [BDHB08]
and Anderson and Peters [AP10], our experience with past courses
shows that students lose time and motivation fighting software
complexities instead of focusing on course goals. Therefore, the
hands-on tutorial part of our VR course was limited in compari-
son to other computer graphics courses, and student projects in VR
typically had a difficult and time-consuming start phase.

In this paper, we focus on reducing the software-side complexity
of VR courses, with the goals of increasing hands-on tutorial con-
tent and enabling more student projects. We define the following
requirements for a VR software framework:

1. The framework must be free and open-source. We agree with
Sousa Santos et al. [SDM15] that in academic contexts paying
for VR software licenses is problematic, especially when stu-
dents can use their own devices.

2. The framework must allow the use of external rendering soft-
ware, but also plain OpenGL. High-level rendering engines are
useful for advanced student projects and thesis works, but sim-
ple tutorial assignments should not require the students to learn
about such an engine when plain OpenGL is sufficient.

3. The framework must support the full range of common VR
graphics hardware, including head-mounted displays and multi-
GPU/multi-host setups. Applications based on the framework
must run in CAVE-like VR environments and other hardware
available in a VR lab, and also on the students’ own devices.

4. The framework must be easy to set up and work with. Students
must be able to quickly reach a productive familiarity with the
framework so that they can focus on course goals.

To arrive at a VR framework that fulfills these requirements,
we propose a technique to simplify multi-window, multi-GPU, and
multi-process handling in Sec. 3, and describe its implementation
in Sec. 4. Sec. 5 shows example results, and Sec. 6 discusses the
current state and future work.

2. Related Work

Software frameworks used in VR courses at universities include in-
house frameworks that are not publicly available [Sta05] and/or are

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

DOI: 10.2312/eged.20161024

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/eged.20161024

M. Lambers / Lowering the entry barrier for students programming Virtual Reality applications

while application is running do
preRenderProcess();
foreach window w do

preRenderWindow(w);
for i← 1 to stereoRenderPasses(w) do

Mi← viewMatrix(w, i);
Fi← frustum(w, i);
Ti← texture(w, i);
render(Mi,Fi,Ti);

end
postRenderWindow(w);

end
postRenderProcess();
foreach window w do

updateDisplay(w, T1, T2);
asyncBufferSwap(w);

end
processEvents();
updateApplication();
waitForBufferSwaps();

end
Algorithm 1: The main loop in the single-context single-thread
approach. Multi-process handling is omitted for brevity.

not actively developed [Ant09, DK11], frameworks that are cou-
pled to a particular rendering, scene graph, or game engine [Tra99,
vRKG∗00,LCC∗12,SDSS14] and scene graph engines with multi-
GPU or multi-host support [Rei02], and web-oriented techniques
such as VRML and WebGL [Zar06,SDM15]. None of the solutions
from these categories fulfill the requirements defined in Sec. 1.

The only two frameworks we could find which fulfill the require-
ments 1 – 3 are VR Juggler [BJH∗01] and Equalizer [EMP09]. Both
fail to fulfill requirement 4. As noted by Sousa Santos [SDM15],
VR Juggler is complex to install and set up, and support for recent
hardware is absent. We also note that development seems to have
slowed down significantly, or even stopped.

We have therefore based our VR courses, tutorials, and projects
on Equalizer in the last years. While it is a very powerful and flex-
ible framework, capable of much more than just VR application
scenarios, in our experience it is also very hard for students to work
with. We have observed the following major obstacles:

• Install-and-setup obstacle: Equalizer is split into many sub-
libraries and requires several external libraries that a custom
build script partly tries to download and install during the Equal-
izer build. This process fails regularly on relevant platforms.

• Hierarchy-level obstacle: Distributing program logic over the
Equalizer hierarchy levels (see Sec. 3) runs counter to the stu-
dents’ previous experiences with object-oriented programming,
which is to group program logic according to its purpose.

• Multi-context obstacle: Equalizer uses multiple OpenGL con-
texts, and contexts on the same GPU share objects such as tex-
tures. Students are typically not familiar with OpenGL contexts,
context sharing, and context/thread binding. As a result, they
struggle to understand which context is active at which time and
in which thread, and how OpenGL objects should be managed
across multiple contexts and/or multiple GPUs.

• Multi-thread obstacle: Equalizer uses multiple rendering threads

c l a s s VRAppl i ca t ion {
/∗ Mandatory f u n c t i o n s ∗ /

/ / Update s c e n e s t a t e (a n i m a t i o n s e t c) .
/ / C a l l e d once b e f o r e each new frame .
void u p d a t e (. . .) = 0 ;

/ / Render t h e s c e n e i n t o t e x t u r e T u s i n g
/ / f r u s t u m F and view m a t r i x M.
void r e n d e r (M, F , T) = 0 ;

/∗ O p t i o n a l f u n c t i o n s ∗ /
/ / Even t hand l ing , u s i n g Qt c o n v e n t i o n s

void k e y P r e s s E v e n t (. . .) {}
void mouseMoveEvent (. . .) {}
void mousePres sEven t (. . .) {}

/ / S p e c i a l per−p r o c e s s / per−window a c t i o n s
void p r e R e n d e r P r o c e s s (. . .) {}
void preRenderWindow (. . .) {}
void postRenderWindow (. . .) {}
void p o s t R e n d e r P r o c e s s (. . .) {}

/ / Mul t i−p r o c e s s s u p p o r t
void s e r i a l i z e D y n a m i c D a t a (. . .) c o n s t {}
void d e s e r i a l i z e D y n a m i c D a t a (. . .) {}

} ;

Figure 1: Summary of the interface that a VR application needs to
implement. Note that most functions are optional.

within each process on multi-GPU systems. Many students
struggle to grasp all consequences of this approach, especially
when integrating third-party software, and consequently run into
multithreading pitfalls that are notoriously hard to debug.

Like Sousa Santos et al. [SDM15], we prefer simple software
that allows “actually understanding the whole process necessary to
create a virtual environment”. Furthermore, we agree with Boers
et al. [BDHB08] and Anderson and Peters [AP10] that students
need to focus on course goals instead of losing time and motivation
fighting with framework setup and usage complexities.

3. Simplified VR Application Programming

A central function of a VR framework is the handling of multi-GPU
and multi-node render systems. Challenges associated with multi-
GPU programming are listed in the Parallel OpenGL FAQ [Eil07].
The main aspects relevant to VR are the following:

• An OpenGL context can only be bound to one thread at a time,
and a switch of that thread is expensive. Therefore, all rendering
to a context should happen from only one thread.

• Access to a GPU is serialized by the driver. Rendering into dif-
ferent contexts on the same GPU therefore best happens in a
serial manner, to avoid unnecessary costly context switches.

• The swapping of back and front buffers of a context is typically
synchronized with the refresh rate of the connected display. The
function that triggers the swap blocks the calling thread until that
swap happens.

• OpenGL contexts can share objects such as textures if they live
on the same GPU.

• Multi-GPU systems need to provide a way for an application to
differentiate between GPUs. This is system dependant.

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

34

M. Lambers / Lowering the entry barrier for students programming Virtual Reality applications

Figure 2: Example VR application running in a CAVE-like VR lab (left), across a laptop and a desktop PC (middle), and on the Oculus Rift
DK2 head-mounted display (right).

The Equalizer framework handles these challenges using a hi-
erarchy of processes, GPUs, windows, and channels. Each process
can handle multiple GPUs, each GPU can drive multiple windows,
and each window can be divided into multiple channels. Each win-
dow has its own context, and contexts on the same GPU share ob-
jects. Each GPU has a dedicated rendering thread.

While very flexible and powerful, this multi-context multi-thread
approach introduces a lot of complexity: an application needs to
split operations and data over four hierarchy levels, it has to man-
age multiple contexts that share objects only if they live on the same
GPU, and it has to manage concurrent access to process-level re-
sources by different rendering threads.

We propose the following simplified single-context single-thread
approach. There are only two hierarchy levels: process and win-
dow. Each process handles only one GPU, and maintains a master
OpenGL context on that GPU that is not connected to any visible
window. This is the only context a VR application process sees. All
windows of a process have their own private contexts that share ob-
jects with the master context. The windows are represented by tex-
tures in the master context. The private window contexts are driven
by private rendering threads that display these textures and wait for
the buffer swap, while the main thread is free for other work such
as application scene state updates. The corresponding render logic
is summarized in Alg. 1.

In this approach, the application programmer only handles a set
of textures in a single OpenGL context, and renders different views
into these textures sequentially from the main thread. The multi-
context and multi-thread obstacles are eliminated.

Multiple processes, both for multi-GPU and multi-host setups,
are handled by serializing relevant VR application data (mostly
scene state) on the master process, writing it via local or network
pipes to the slave processes, and deserializing it there. The applica-
tion only needs to implement serialization and deserialization logic.

One potential drawback of our approach affects multi-GPU
hosts. We use separate processes for each GPU, and inter-process
communication via pipes. Equalizer uses separate threads, thus
avoiding communication overhead. However, we found that the
complexities and pitfalls of multi-threaded rendering often drove
our students to switch to multi-process but single-threaded Equal-
izer configurations, thereby eliminating the advantage. Further-
more, we expect that the communication costs are tolerable when
shared memory or similar techniques are used for processes on the
same host.

4. A Simple VR Application Framework

We based our implementation of the single-context single-thread
approach on the C++ language and the Qt library because our stu-
dents are already familiar with both from other courses, and be-
cause both offer widely used and easy-to-setup development tools.
This eliminates the install-and-setup obstacle.

The interface that a VR application has to implement is sum-
marized in Fig. 1. Since only a single interface needs to be im-
plemented, the hierarchy-level obstacle is removed. To allow stu-
dents to quickly become familiar with the framework, the interface
is kept minimal, and optional components have an empty default
implementation.

The configuration file concept of Equalizer has been very useful
in our experience, and we copy it in our framework. A configura-
tion file defines the VR application processes, one for each GPU,
and their properties. For each process, it defines windows with at-
tributes such as stereo mode, size, position, and projection area ge-
ometry. When starting the VR application, the running process is
assumed to be the master process defined first in the configuration
file. Slave processes are started automatically by the framework.
The application can run unmodified on different display hardware
setups by using different configuration files.

5. Results

The simplifications proposed in Sec. 3 are made possible by graph-
ics hardware and API capabilities that are now ubiquitous (render-
to-texture via framebuffer objects, off-screen contexts, context ob-
ject sharing). All platform dependent aspects are handled by Qt,
keeping the code base of the framework small.

To demonstrate the versatility in terms of display hardware se-
tups, we show a simple example application using different config-
uration files for different hardware setups in Fig. 2. The first setup
(left) is a CAVE-like VR lab. Its render system has four GPUs, each
connected to three projectors for a total of six passive stereo pro-
jection areas. The second setup (middle) demonstrates multi-host
support using a laptop and a desktop PC. The third setup (right) is
an Oculus Rift DK2 head-mounted display.

While the simple example application is written in plain
OpenGL, more complex applications often require external render-
ing engines. The integration of such engines is simplified by our
single-context single-thread approach since this corresponds well

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

35

M. Lambers / Lowering the entry barrier for students programming Virtual Reality applications

Figure 3: Left: OpenSceneGraph viewer running in a three-
window configuration with monoscopic views. Right: a VTK vi-
sualization pipeline running in a three-window configuration with
stereoscopic views for red-cyan anaglyph glasses.

to the common usage scenario of embedding a rendering engine
into an application-managed graphics window.

The versatility in terms of rendering approaches is demonstrated
in Fig. 3. The left side shows a scene rendered by a full-featured
OpenSceneGraph viewer. The integration of OpenSceneGraph with
our framework requires only few lines of code, while its integration
with Equalizer (osgScaleViewer; included in the Equalizer source
code) is much more complex and still does not provide full func-
tionality. The right side of the figure shows a VTK example that
renders an isosurface extracted from a voxelized sphere. The inte-
gration of VTK is equally simple and does not impose any restric-
tions on VTK visualization pipelines.

Full source code is available under the MIT/Expat license
at https://github.com/marlam/qvr. This includes the
framework, called QVR, and all examples shown in this section.

6. Discussion and Conclusions

The four complexity obstacles we observed while using Equalizer
are removed: the single-context single-thread approach removes
the multi-context and multi-threading obstacles, and the framework
implementation removes the install-and-setup and hierarchy-level
obstacles.

The framework handles distributed graphics only. Applica-
tions typically use third-party libraries for other VR-related tasks,
e.g. VRPN [THS∗01] for tracking devices. On the one hand, this
requires teachers to provide additional software depending on their
lab equipment and course topics. On the other hand, it keeps the
framework lightweight and easy to set up, and lowers maintenance
burden.

The framework is currently in a testing stage. Initial feedback
from selected students is encouraging to the point that we decided
to base our future VR courses on it. However, further tweaks will
likely become necessary once the framework is in wider use. For
example, we plan to measure the impact of the potential commu-
nication overhead in multi-GPU systems for real-world applica-
tions, and implement appropriate countermeasures such as the use
of shared memory instead of pipes if required.

References
[Ant09] ANTHES C.: A Collaborative Interaction Framework for Net-

worked Virtual Environments. PhD thesis, Institute of Graphics and Par-
allel Processing at JKU Linz, Austria, August 2009. 2

[AP10] ANDERSON E. F., PETERS C. E.: No more reinventing the vir-
tual wheel: Middleware for use in computer games and interactive com-
puter graphics education. In Eurographics - Education Papers (2010).
doi:10.2312/eged.20101013. 1, 2

[BDHB08] BOERS J., DOBBE J., HUIJSER R., BIDARRA R.: From a
light CG framework to a strong cannibal experience. In Eurographics -
Education Papers (2008). doi:10.2312/eged.20081002. 1, 2

[BJH∗01] BIERBAUM A., JUST C., HARTLING P., MEINERT K.,
BAKER A., CRUZ-NEIRA C.: VR Juggler: a virtual platform for virtual
reality application development. In IEEE Proc. Virtual Reality (March
2001), pp. 89–96. doi:10.1109/VR.2001.913774. 2

[DK11] DOERR K.-U., KUESTER F.: CGLX: A scalable, high-
performance visualization framework for networked display environ-
ments. IEEE Trans. Visualization and Computer Graphics 17, 3 (March
2011), 320–332. doi:10.1109/TVCG.2010.59. 2

[Eil07] EILEMANN S.: Parallel OpenGL FAQ. http:
//www.equalizergraphics.com/documentation/
parallelOpenGLFAQ.html, 2007. Accessed: 2015-12-20.
2

[EMP09] EILEMANN S., MAKHINYA M., PAJAROLA R.: Equalizer: A
scalable parallel rendering framework. IEEE Trans. Visualization and
Computer Graphics 15, 3 (May 2009), 436–452. doi:10.1109/
TVCG.2008.104. 1, 2

[LCC∗12] LUGRIN J.-L., CHARLES F., CAVAZZA M., LE RENARD M.,
FREEMAN J., LESSITER J.: CaveUDK: A VR game engine middleware.
In Proc. ACM Symp. on Virtual Reality Software and Technology (2012),
pp. 137–144. doi:10.1145/2407336.2407363. 2

[Rei02] REINERS D.: OpenSG: A scene graph system for flexible and ef-
ficient realtime rendering for virtual and augmented reality applications.
PhD thesis, Technische Universität Darmstadt, 2002. 2

[SDM15] SANTOS B. S., DIAS P., MADEIRA J.: A virtual and aug-
mented reality course based on inexpensive interaction devices and dis-
plays. In Eurographics - Education Papers (2015). doi:10.2312/
eged.20151022. 1, 2

[SDSS14] SOUZA D., DIAS P., SANTOS D., SANTOS B. S.: Platform
for setting up interactive virtual environments. In Proc. SPIE 9012, The
Engineering Reality of Virtual Reality (2014), pp. 90120O–1–90120O–
9. doi:10.1117/12.2038668.7. 1, 2

[Sta05] STANSFIELD S.: An introductory VR course for undergradu-
ates incorporating foundation, experience and capstone. In Proc. 36th
SIGCSE Technical Symposium on Computer Science Education (2005),
SIGCSE, pp. 197–200. doi:10.1145/1047344.1047417. 1

[THS∗01] TAYLOR II R. M., HUDSON T. C., SEEGER A., WEBER H.,
JULIANO J., HELSER A. T.: VRPN: A device-independent, network-
transparent VR peripheral system. In Proc. ACM Symp. on Virtual Re-
ality Software and Technology (2001), pp. 55–61. doi:10.1145/
505008.505019. 4

[Tra99] TRAMBEREND H.: Avocado: a distributed virtual reality frame-
work. In IEEE Proc. Virtual Reality (Mar 1999), pp. 14–21. doi:
10.1109/VR.1999.756918. 2

[vRKG∗00] VAN REIMERSDAHL T., KUHLEN T., GERNDT A., HEN-
RICHS J., BISCHOF C.: ViSTA: a multimodal, platform-independent
VR-toolkit based on WTK, VTK, and MPI. In Proc. 4th International
Immersive Projection Technology Workshop (2000). 2

[Zar06] ZARA J.: Virtual reality course - a natural enrichment of com-
puter graphics classes. Computer Graphics Forum 25, 1 (2006), 105–
112. doi:10.1111/j.1467-8659.2006.00921.x. 2

c© 2016 The Author(s)
Eurographics Proceedings c© 2016 The Eurographics Association.

36

https://github.com/marlam/qvr
http://dx.doi.org/10.2312/eged.20101013
http://dx.doi.org/10.2312/eged.20081002
http://dx.doi.org/10.1109/VR.2001.913774
http://dx.doi.org/10.1109/TVCG.2010.59
http://www.equalizergraphics.com/documentation/parallelOpenGLFAQ.html
http://www.equalizergraphics.com/documentation/parallelOpenGLFAQ.html
http://www.equalizergraphics.com/documentation/parallelOpenGLFAQ.html
http://dx.doi.org/10.1109/TVCG.2008.104
http://dx.doi.org/10.1109/TVCG.2008.104
http://dx.doi.org/10.1145/2407336.2407363
http://dx.doi.org/10.2312/eged.20151022
http://dx.doi.org/10.2312/eged.20151022
http://dx.doi.org/10.1117/12.2038668. 7
http://dx.doi.org/10.1145/1047344.1047417
http://dx.doi.org/10.1145/505008.505019
http://dx.doi.org/10.1145/505008.505019
http://dx.doi.org/10.1109/VR.1999.756918
http://dx.doi.org/10.1109/VR.1999.756918
http://dx.doi.org/10.1111/j.1467-8659.2006.00921.x

