EUROGRAPHICS 2015/ M. Bronstein and M. Teschner

Education Paper

Redesign of an Introductory Computer Graphics Course

Philipp Ackermann and Thomas Bach

InIT, School of Engineering, Zurich University of Applied Sciences (ZHAW), Winterthur, Switzerland

Abstract

The redesign of our historically grown Computer Graphics course was primarily triggered by the need to incor-
porate modern, shader-based OpenGL. This technical modification led to discussions on the relevance of course
topics, the order of presentation, the role of sample programs, and problem sets addressed in lab exercises. The
redesign resulted in changing from a bottom-up to a top-down approach and in a shift from low-level procedural
OpenGL to the use of a high-level object-oriented 3D library on top of WebGL. This paper presents our motivation,
applied principles, first results in teaching the redesigned course, and student feedback.

Categories and Subject Descriptors (according to ACM CCS): K.3.2 [Computers and Education]: Computer and
Information Science Education—Computer Science Education

1. Background and Context

At ZHAW School of Engineering, Computer Graphics (CG)
is an elective module with 4 ECTS credits in the Bachelor
program of the Computer Science curriculum. Being a uni-
versity of applied sciences (technical college) our students
are aged between 20 and 25. As an introductory course the
educational goals cover the knowledge transfer of basic CG
theory as well as gaining practical experience in develop-
ing CG software. The course was taught for over 10 years
and followed in form and content the various editions of the
widely accepted introductory book "Interactive Computer
Graphics" by Angel and Shreiner [Ang00, AS12]. While fo-
cussing on 3D graphics the course mainly used the OpenGL
technology for sample codes and lab exercises in C/C++.

Week Lecture Lab Exercises

1 CG & OpenGL Introduction Dev. Env. Setup
2 Mathematical Foundation OpenGL

3 Polygonial Meshes dito
4-5 OpenGL Programming dito
6-7 Shading and Textures dito
8 Raytracing Java Raytracer

9-10 Animation & Collision Det. dito
11-12 GPU Prog., OpenGL Ext. GLSL
13-14 Color, Curves & Surfaces dito

Table 1: Overview of original CG course.

(© The Eurographics Association 2015.

DOI: 10.2312/eged.20151021

2. Changing Requirements

Although theoretical topics in computer graphics are com-
monly accepted and stable, technology innovations have a
strong impact on used hardware and software within the
computer graphics industry. In the past this evolution led
to a modern, shader-based graphics pipeline and the fixed
pipeline of early OpenGL became deprecated. In our Com-
puter Graphics course some lectures and lab exercises for
shader programming were successively added. However this
led to a confusing mix of deprecated fixed pipeline and mod-
ern shader-based OpenGL source code. We therefore needed
to revise the historically grown sample code base within our
lectures and exercises.

In the current Internet age knowledge can be obtained in
much better ways than sitting passively in a classroom. To-
day’s students have instant access to online books, good pre-
sentations and tons of code samples on computer graphics
topics. Nowadays teaching at a school has to be more than
transmission of (testable) information. Besides guidance
through relevant topics by classroom lectures, we wanted
to provide an active and interactive learning environment.
The goal of our redesign was therefore a well-balanced mix
of theory and learning by doing through interactive samples
and attractive lab assignments.

Besides these technological adjustments we became
aware of the importance of meaningful content [CC09] to be
graphically presented in sample applications and in lab exer-

delivered by

-G EUROGRAPHICS
: DIGITAL LIBRARY

www.eg.org diglib.eg.org

http://www.eg.org
http://diglib.eg.org
http://dx.doi.org/10.2312/eged.20151021

10 Ph. Ackermann & Th. Bach / Redesign of an Introductory Computer Graphics Course

cises. Presenting realistic aspects of applied computer graph-
ics in an interesting context is key for students’ motivation
and learning success. Students that grew up with sophisti-
cated computer games and 3D visual effects in movies have
high expectations on interactivity and attractive content. We
therefore wanted to shift from a pure technology focus to a
broader approach that includes programming skills as well
as experience in handling rich 2D and 3D media (e.g., gain-
ing know-how by applying corresponding computer-aided
design tools and 2D/3D file formats).

3. Redesigned Computer Graphics Course

The following chapters give reflections on applied principles
for redesigning our introductory Computer Graphics course.
First we present our teaching experience. Afterwards we
evaluate the students’ feedback. Our students are software
engineers and have typically a professional background with
a strong application focus. In previous semesters they were
taught in linear algebra and software engineering (among
others), so they have considerable knowledge in both applied
mathematics and software development.

The redesigned course (see overview in Table 2) was con-
ducted in fall of 2014 from mid September to end of De-
cember. It consisted of 14 two-hour lectures plus weekly
two-hour lab sessions as part of the 5th semester of the 3
year Bachelor studies program. The course assessment in-
cluded weekly reviews of student lab exercises and a written
examination at the end of the semester. The final grade was
calculated by the result of the exam (60% weight) and the
amount of lab exercises finished successfully (40% weight).

Lab Exercises

1 CG Introduction & History =~ Web Dev. Env.
2 2D Computer Graphics SVG/SVG.js
3 Information Visualization D3.js

Week Lecture

4-9 3D Computer Graphics Three.js
10-11 GPU Programming GLSL/WebGL
12-14 Raytracing, Color Theory Blender Plug-in
(with Python)

Table 2: Overview of redesigned CG course.

The redesigned course was attended by 33 students and
held in two classes, one with full-time students (62%), the
other with part-time students (38%). The evaluation on stu-
dents’ preferences were conducted via anonymous online
voting during lectures. The authors taught the redesigned
course as well as the old one a year ago, therefore the pre-
sented results are not biased by different instructors.

3.1. High-level 2.0

Early OpenGL was seen as a high-level library because it ab-
stracted low-level rasterization methods and supported im-

mediate mode rendering in a fixed graphics pipeline. Modern
OpenGL is more flexible but as a side effect lowers the sup-
ported abstraction level. Early OpenGL sample applications
already needed quite a lot of utility libraries to provide win-
dow management, event handling, and file I/O for images
and geometry. It took a great deal of effort to support and
teach these utility libraries, especially in a multi-platform
environment. Modern OpenGL needs even more additional
libraries, e.g., for matrix transformations and shader pro-
grams, and it became significantly more complex to develop
a minimal 3D program on top of modern OpenGL.

The redesigned CG course is taught at the Zurich Univer-
sity of Applied Sciences where practical relevance of stu-
dents’ know-how and hands-on experience are important.
Based on our experience with industry partners it seems to
be more likely that our students will work with an already
established graphics framework rather than building their
own graphics library on top of OpenGL from scratch. On
the other hand high-level graphics libraries such as in-house
developed frameworks, open-source visualization toolkits
(e.g., VTK) or commercial game engines encompassing
object-oriented structures for 3D views, scene graphs, ani-
mations, etc. are typical in professional IT environments.

Because our aim is to teach industry-relevant CG concepts
with attractive assets we emphasize higher abstractions on
the technology stack (high-level 2.0) by additionally includ-
ing high-level libraries, applications to create graphical con-
tent, as well as file formats to exchange media assets.

Due to these reasons it was clear that the redesigned CG
course will need additional software functionality on top of
modern OpenGL. The following solutions were evaluated:

e Open-source educational C/C++ framework such as glGA
[PPGT14] of the University of Crete or the framework
from the University of Stuttgart [RME14]

e Closed-source commercial game engine such as Unity

e Web-based JavaScript environment on top of WebGL

Although the educational glGA framework possesses at-
tractive components and would have been a reasonable con-
tinuation of our former course, a Web-based JavaScript en-
vironment was chosen due to the following reasons:

e WebGL gains momentum and is supported on (mostly all)
desktop and mobile Web browsers

e The Browser-based environment solves the multi-
platform requirement (Win, Mac, Linux) as well as win-
dow and event handling

e Web-based JavaScript libraries are open-source, free and
often supported by an active developer community

e The newest edition of the introductory text book [AS14]
moved from OpenGL to WebGL

e Itis easy to integrate text, images, 2D graphics, 3D graph-
ics as well as UI elements into rich Web applications

e Our students were already introduced in Web technology
so our course can concentrate on CG topics

(© The Eurographics Association 2015.

Ph. Ackermann & Th. Bach / Redesign of an Introductory Computer Graphics Course 11

By moving to a Web-based JavaScript programming envi-
ronment, we were able to shift the focus from low-level pro-
cedural OpenGL to an object-oriented 3D framework. We
have chosen the Three.js [Dirl3, Par14] JavaScript library
built on top of WebGL. Three.js provides modular exten-
sions for navigation, file import/export, animations, collision
detection, and more. In addition the COLLADA file format
(an open standard for 3D content exchange) and Blender
as an open-source multi-platform 3D content editor (with
JSON as exchange format) are covered in lectures and ex-
ercises in order to handle attractive 3D assets.

In parallel we set up a similar technology stack for 2D
computer graphics (Table 3). The SVG standard is promoted
for file exchange and as Document Object Model (DOM)
for 2D graphics in the Web browser. The JavaScript libraries
SVG.js and D3.js [BOH11,Murl3] are utilized to create in-
teractive 2D graphics and information visualizations. The
open-source application Inkscape provides a multi-platform
editor for creating 2D graphics content.

2D 3D
File Format SVG COLLADA
Application Inkscape Blender
Library D3.js Three.js
API SVG.s WebGL/OpenGL
Driver Display Driver Graphics Card Driver
Hardware Frame Buffer GPU, Depth Buffer

Table 3: Covered topics of 2D and 3D technology stack.

By using high-level libraries and content-rich media as-
sets, it is assumed that students understand the basic prin-
ciples of computer graphics in an easier and much engag-
ing way. Learned concepts understood within the Three.js
JavaScript library prepare students to apply computer graph-
ics concepts in Web applications as well as in larger 3D
frameworks and game engines.

high-level object-oriented lib | 50% 13

does not matter | 27% 7
low-level procedural API | 23% 6

0 5 10 15
number of students

Figure 1: Students’ preferences on abstraction level.

Feedback from students is positive on the high-level ap-
proach of the redesigned course (Figure 1). Critical votings
with preferences for low-level procedural API came from
some full-time students and were mainly due to the course
announcement highlighting OpenGL as in earlier years and
some bias against the JavaScript programming language.

(© The Eurographics Association 2015.

3.2. Radical Top-down Approach

As in most CG classes at universities, our former course
followed a bottom-up approach where mathematical topics
such as vector algebra and transformation matrices were in-
tensively examined at the beginning of lectures and exer-
cises. Together with the low-level API approach of OpenGL,
it took several weeks within the semester before any interest-
ing computer-generated graphics appeared on the screen (see
Table 1). Using a high-level technology approach we were
able to alter the order of presenting CG topics. By applying
aradical top-down approach, the subsection on 3D computer
graphics starts content-driven with geometry in 3D file for-
mats, scene graph concepts and sample applications using
Three.js. By working with real data within a 3D editor and
by operating sample Web3D applications, students apply 3D
technology right from the beginning and get a first intuition
on CG topics. Step-by-step more details are explained during
the CG course, covering light and material models, transfor-
mation and projection matrices, texture mapping, GPU hard-
ware, shader programming, etc. (Table 4).

=

Lecture Topics

Scene Graph, Camera, Geometry, Three.js Intro
Light, Color, Modeling in Blender, 3D File Formats
Math Basics, Transformation & Projection Matrices
Interaction & Navigation in 3D

Environment, Bump & Shadow Mapping
Animation, Collision Detection

GPU Hardware, OpenGL, WebGL

Shader Programming with GLSL

~ O 0O Co N O\ A

~~

Table 4: Details of 3D Computer Graphics subsection.

Such a top-down approach is more realistic in how chal-
lenges are tackled in practice, seems to be more engaging
and therefore positively supports self-motivation among the
students.

3.3. Explorative Sample Source Code

Sample applications are key to facilitate knowledge acqui-
sition a) via "learning by simulating” concepts in interac-
tive examples and b) via “understanding by reading” corre-
sponding source code. Web-based sample programs are not
primarily used for ease of deployment but to provide an easy
to use programming playground that runs on multiple plat-
forms (Win, Mac, Linux). Beside the lectures’ presentation
slides, about 45 2D and 40 3D sample applications are pro-
vided to our CG students. The demo programs are single
file programs (no include files except used libraries) that
encompass HTMLS declarations and JavaScript code. The
demo files have a size of 50 to 400 lines of code (including
comments and blank lines) and present straightforward ba-
sic CG concepts. The demo source code is therefore easy to

12 Ph. Ackermann & Th. Bach / Redesign of an Introductory Computer Graphics Course

present during lectures and tightly arranged to read without
switchovers in a text editor.

Technol. Topics of Demo Programs

Canvas line, bezier curve, sprite anim, rotary gauge
SVG basic shapes, gradient colors, transparency,
bezier path, text, image, blur & shadow filter
SVG.js event handling, interaction & animation
D3.js charts, network graph, map, data filtering
Three.js projection, wireframe, material, light, GUI,
model transformation, camera navigation,
geometries, CSG, animation, shadow, fog,
texture mapping, picking, dragging, handles,
file I/O via COLLADA,, JSON, OBJ, VTK
GLSL phong shading, normal & parallax mapping

Table 5: Overview of demos provided as source code.

Use of JavaScript in HTML for interactive SVG

Figure 2: Examples of Web-based demo programs.

The demo programs with their open source code were
well received by the students (Figure 3) and served as
starting point for their lab work. The Web-based demo
programs are available for download at http://github.
engineering.zhaw.ch/VisualComputingLab/CGdemos.

too complex D 1

ok & supportive | 96% 25

too simple | 0

T 1

0 5 10 15 20 25
number of students

Figure 3: Students’ evaluation on sample code.

3.4. Open Scope of Lab Exercises

Some of the lab exercises are given as open scope projects.
For example students were asked to create interactive infor-
mation visualization of data of their own interest, e.g., from
their hobby or professional background or by using Open
Data sources (Figure 4). As a 3D project, the task was to
create a 3D product configurator (Figure 6) of a self-selected
artifact. By assigning such content-driven problem sets, stu-
dents learn how to transfer basic CG concepts to convincing
solutions. They gain experience in managing 2D and 3D as-
sets using content editors, (free/open) data or model bases,
and corresponding exchange file formats. Furthermore, stu-
dents learn how to integrate 2D/3D content with interactive
functionality to create attractive Web applications. Most of
the students appreciated the open scope of lab work (Fig-
ure 5) and were therefore inspired and motivated.

i & Bigg
L] L] o i
l-.... (B R =
- -=
[] faf o =
R = |
AN |
. | E]

0o 00

0200000000 - 00

° 00000 ©-00000

Figure 4: Examples of students’ lab work on 2D informa-
tion visualization using the D3.js JavaScript library.

open scope of work | 68% 17

does not matter D 1

predefined tasks | 28% 7

0 5 10 15 20
number of students

Figure 5: Students’ preferences on lab work.

4. Results and Conclusion

Figure 7 shows that students in the redesigned course
achieved better results in their excercises. First of all they
were able to execute additional tasks on 2D SVG graph-
ics, interactive information visualization with D3.js, and 3D

(© The Eurographics Association 2015.

http://github.engineering.zhaw.ch/VisualComputingLab/CGdemos

Ph. Ackermann & Th. Bach / Redesign of an Introductory Computer Graphics Course 13

ACCESSORY

w0 ACCESSORY

lmHm
- (

g

Figure 6: Examples of students’ lab work on 3D product configuration using the Three.js JavaScript library.

modeling with Blender. Secondly students’ performance in
their lab work on 3D graphics (OpenGL/Three.js 1 & 2)
improved substantially shown by an increased return rate
of finished exercises. Our students often skip the last exer-
cises, either because they already have enough points or be-
cause they are too absorbed by other courses. We therefore
switched the order of the last two lab exercises, so that more
students practice GLSL shader programming at the expense
of gaining experience in developing a raytracer.

100 - 90 94)
82 - 84 84
]] 74 [T 76
62 64
50 H
42 4
0 0\ T Qo‘ 1 ’\,\ I B I
R N R
Q o &S & & € &
) 04‘ W 6&\ 6\0 %.}4&
& & 3 A

€ €
& & &

F 5 5 ’ [O redesigned [0 original

Figure 7: Rate of finished lab exercises in %

Due to the high-level, top-down approach of the re-
designed Computer Graphics course we gained

e a broader scope, adding 2D graphics and Information Vi-
sualization to the instructed CG topics

more interactive sample applications with source code
rich 2D/3D content right from the beginning of the course
experience in creating 3D models and animations
motivated students that realized attractive projects valu-
able for their own portfolio.

(© The Eurographics Association 2015.

Feedback via lab journals acknowledges the improvements.
Due to these positive results we plan to apply this concept to
further Visual Computing courses within our curriculum.

References

[Ang00] ANGEL E.: Interactive Computer Graphics: A Top-down
Approach with OpenGL. Addison-Wesley, 2000. 1

[AS12] ANGEL E., SHREINER D.: Interactive Computer Graph-
ics: A Top-down Approach with Shader-based OpenGL. Pearson
international edition. Addison-Wesley, 2012. 1

[AS14] ANGEL E., SHREINER D.: Interactive Computer Graph-
ics: A Top-Down Approach with WebGL. Pearson Education,
Limited, 2014. 2

[BOH11] BOSTOCK M., OGIEVETSKY V., HEER J.: D3 data-
driven documents. [IEEE Transactions on Visualization and
Computer Graphics 17, 12 (Dec. 2011), 2301-2309. doi:
10.1109/TvVCG.2011.185.3

[CC09] CASE C., CUNNINGHAM S.: Teaching computer
graphics in context. Computer Graphics Education 09 Work-
shop (2009). URL: http://media.siggraph.org/
education/reports/CGEO9-Workshop-Report.
pdf. 1

[Dir13] DIRKSEN J.: Learning Three.js: The JavaScript 3D Li-
brary for WebGL. Packt Publishing, 2013. 3

[Murl3] MURRAY S.: Interactive Data Visualization for the Web.
O’Reilly, Sebastopol (CA), 2013. 3

[Par14] PARISI T.: Programming 3D Applications with HTMLS5
and WebGL: 3D Animation and Visualization for Web Pages.
O’Reilly Media, 2014. 3

[PPGT14] PAPAGIANNAKIS G., PAPANIKOLAOU P., GREASSI-
DOU E., TRAHANIAS P.: glGA: an OpenGL Geometric Applica-
tion Framework for a Modern, Shader-based Computer Graphics
Curriculum. In Eurographics 2014 - Education Papers (2014),
Bourdin J.-J., Jorge J., Anderson E., (Eds.), The Eurographics
Association. doi:10.2312/eged.20141026. 2

[RME14] REINA G., MULLER T., ERTL T.: Incorporating mod-
ern opengl into computer graphics education. Computer Graph-
ics and Applications, IEEE 34, 4 (2014), 16-21. doi:10.
1109/MCG.2014.69.2

http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1109/TVCG.2011.185
http://media.siggraph.org/education/reports/CGE09-Workshop-Report.pdf
http://media.siggraph.org/education/reports/CGE09-Workshop-Report.pdf
http://media.siggraph.org/education/reports/CGE09-Workshop-Report.pdf
http://dx.doi.org/10.2312/eged.20141026
http://dx.doi.org/10.1109/MCG.2014.69
http://dx.doi.org/10.1109/MCG.2014.69

